УСТРОЙСТВА ПРИЕМА И ОБРАБОТКИ СИГНАЛОВ
В УПРАЖНЕНИЯХ И ЗАДАЧАХ

Учебное пособие
УДК 621.396.6 (075)
ББК 32.811.7я73
A80

Рецензенты:
А.А. Кузнецов, д-р техн. наук, профессор;
Д.А. Титов, канд. техн. наук, доцент

Аржанов, В.А.

A80 Устройства приема и обработки сигналов в упражнениях и задачах: учеб. пособие / В. А. Аржанов, А. П. Науменко, А. И. Одинец, Т. В. Багаева; Минобрнауки России, ОмГТУ. – Омск: Изд-во ОмГТУ, 2018. – 220 с.: ил.
ISBN ___

В учебном пособии рассматриваются вопросы проектирования радиоприемных устройств и их отдельных блоков на основе полупроводниковых приборов. Представлены задачи по таким темам, как: входные цепи, усилители радиочастоты, преобразователи и усилители промежуточной частоты, детекторы. Рассмотрены шумовые характеристики радиоприемных устройств, а также их помехоустойчивость.

Предназначено для студентов очной и заочной форм обучения по радиотехническим направлениям, изучающих дисциплину «Устройства приема и обработки сигналов» для самостоятельной проработки материала и подготовки к практическим занятиям.

УДК 621.396.6 (075)
ББК 32.811.7я73

Печатается по решению редакционно-издательского совета
Омского государственного технического университета

ISBN ___
© ОмГТУ, 2018
© В.А. Аржанов
© А.П. Науменко
© А.И. Одинец
© Т.В. Багаева
Оглавление

ПЕРЕЧЕНЬ ПРИНЯТЫХ СОКРАЩЕНИЙ..6

Введение ..7

1 ОБЩИЕ ПОКАЗАТЕЛИ РАДИОПРИЕМНЫХ УСТРОЙСТВ8

Задачи ...9

Контрольные вопросы ...10

2 ВХОДНЫЕ ЦЕПИ..11

2.1 Принципиальные и эквивалентные схемы одноконтурных входных цепей при немагнитных антеннах .. 11

2.2 Входные цепи приемников с магнитными антеннами 14

2.3 Входные цепи РПУ дециметрового диапазона 19

2.4 Согласующие цепи ... 28

Примеры решения задач ..32

Задачи ...47

Контрольные вопросы ...52

3 УСИЛИТЕЛИ РАДИОЧАСТОТЫ...54

3.1 Усилители сигналов умеренно высоких частот............................ 54

Примеры решения задач ..60

3.2 Транзисторные усилители СВЧ-диапазона 72

Расчет высокочастотных параметров биполярного транзистора.....78

Расчет ВЧ параметров транзистора по схеме с общей базой......... 82

Расчет ВЧ параметров транзистора в схеме с общим эмиттером 83

Расчет ВЧ параметров полевого транзистора в схеме с общим истоком... 83

Расчет ВЧ параметров полевых транзисторов в схеме с ОИ 85

Расчет ВЧ параметров каскодной схемы общий исток – общая база 86

Расчет одноконтурного каскодного усилителя радиочастоты по схеме общий исток – общая база ... 88

Контрольные вопросы ...90

4 УСИЛИТЕЛИ НА ТУННЕЛЬНЫХ ДИОДАХ И ПОЛУПРОВОДНИКОВЫЕ ПАРАМЕТРИЧЕСКИЕ УСИЛИТЕЛИ........91

4.1 Регенеративные усилители на туннельных диодах 91

4.2 Параметрические полупроводниковые усилители 93

Задачи ...94
5 ПРЕОБРАЗОВАТЕЛИ ЧАСТОТЫ ... 96
 5.1 Основные характеристики преобразователя частоты 98
Примеры решения задач ... 103
Контрольные вопросы .. 109
6 УСИЛИТЕЛИ ПРОМЕЖУТОЧНОЙ ЧАСТОТЫ 110
 6.1 Формирование АЧХ в УПЧ с распределенной избирательностью...... 111
 6.2 Режимы работы каскадов УПЧ с распределенной избирательностью.. 113
 6.3 УПЧ с фильтром сосредоточенной селекции на LC–звеньях 122
Примеры решения задач ... 126
Задачи ... 130
7 ЧАСТОТНЫЕ И ФАЗОВЫЕ ДЕТЕКТОРЫ ... 135
Примеры решения задач ... 140
Задачи ... 142
Контрольные вопросы .. 144
8 ШУМОВЫЕ ХАРАКТЕРИСТИКИ РАДИОПРИЕМНЫХ УСТРОЙСТВ... 145
 8.1 Шумы резисторов .. 145
 8.2 Шумы приемной антенны .. 147
 8.3 Шумы транзисторов .. 148
 8.4 Коэффициент шума и чувствительность 149
Задачи ... 152
Контрольные вопросы .. 156
9 ПРОХОЖДЕНИЕ СИГНАЛА И ШУМА ЧЕРЕЗ ТИПОВЫЕ БЛОКИ РАДИОПРИЕМНЫХ УСТРОЙСТВ ... 158
 9.1 Прохождение шума через радиочастотный блок 158
 9.2 Прохождение шума и немодулированного сигнала через РЧБ 159
 9.3 Прохождение шума через линейный амплитудный детектор 161
 9.4 Прохождение шума через квадратичный амплитудный детектор 163
 9.5 Прохождение шума и гармонического сигнала через линейный АД ... 164
 9.6 Прохождение немодулированного сигнала и шума через ЧД 165
 9.7 Измерение коэффициента шума приемника 166
Примеры решения задач ... 168
Задачи ... 170

4
10 ПОМЕХОУСТОЙЧИВОСТЬ РАДИОПРИЕМНЫХ УСТРОЙСТВ
ШУМОВЫМ (ФЛУКТУАЦИОННЫМ) ПОМЕХАМ ... 173
 10.1 Прием амплитудно-модулированных сигналов 174
 10.2 Прием частотно-модулированных сигналов 177
 10.3 Прием импульсных сигналов ... 180
Прием
амплитудно-
модулированных
сигналов
частотно-
модулированных
сигналов
импульсных
сигналов
Примеры решения задач .. 187
Задачи .. 188
11 ПОМЕХОУСТОЙЧИВОСТЬ РАДИОУПРАВЛЯЕМЫХ УСТРОЙСТВ
ПО ОТНОШЕНИЮ К ШИРОКОСПЕКТРАЛЬНЫМ ИМПУЛЬСНЫМ
ПОМЕХАМ .. 192
 11.1 Характеристики импульсных помех .. 192
 11.2 Подавление импульсных помех ... 194
Прием
частотно-
модулированных
сигналов
импульсных
помех
Примеры решения задач .. 198
Задачи .. 199
12 СИСТЕМЫ АВТОМАТИЧЕСКОЙ РЕГУЛИРОВКИ УСИЛЕНИЯ ... 203
 12.1 Регулировочные характеристики усилителей .. 206
 12.2 Расчет статических характеристик .. 207
Порядок расчета ... 207
 12.3 Расчет динамических характеристик .. 213
Задачи .. 213
ЗАКЛЮЧЕНИЕ ... 218
БИБЛИОГРАФИЧЕСКИЙ СПИСОК ... 219
ПЕРЕЧЕНЬ ПРИНЯТЫХ СОКРАЩЕНИЙ

АД – амплитудный детектор
АМ – амплитудно-модулированный
АРУ – автоматическая регулировка усиления
АЧХ – амплитудно-частотная характеристика
АЭ – активный элемент
ВАХ – вольтамперная характеристика
БВЧ – блок высокой частоты
ВЦ – входная цепь
ГСС – генератор стандартных сигналов
ГШ – генератор шума
ДБШ – диод с барьером Шоттки
ИС – интегральная схема
ИТ – идеальный трансформатор
МПЛ – микрополосковая линия
ПАВ – поверхностные акустические волны
ППУ – полупроводниковый параметрический усилитель
ПЧ – преобразователь частоты
РЧБ – радиочастотный блок
РПУ – радиоприемное устройство
СВЧ – сверхвысокая частота
СЦ – согласующая цепь
ТД – туннельный диод
ТДК – точечный диод
УРЧ – усилитель радиочастоты
УНЧ – усилитель низкой частоты
УП – усилительный прибор
УПЧ – усилитель промежуточной частоты
УТД – усилитель на туннельном диоде
ФД – фазовый детектор
ФСС – фильтр сосредоточенной селекции
ЧИЦ – частотно-избирательная цепь
ЧД – частотный детектор
ЧМ – частотно-модулированный
ЧХ – частотная характеристика
ЭМФ – электромеханический фильтр
Введение

Сборник задач и упражнений ориентирован на типовую программу по дисциплине «Устройства приема и обработки сигналов».

Сложность и многообразие современной радиоприемной и усилительной техники при ограниченном объеме часов на изучение данного курса требуют прочных знаний студентов основ дисциплины, предшествующих изучению устройств приема и обработки сигналов, таких как «Основы теории цепей», «Радиотехнические цепи и сигналы», «Аналоговая схемотехника», «Цифровые устройства и микропроцессоры», «Языки программирования».

В данном сборнике сделана попытка рассмотреть широкий круг вопросов, связанных с подготовкой современных специалистов по радиоприемной технике. В частности, всесторонне рассмотрена схемотехника отдельных каскадов, проектирование отдельных блоков приемного устройства и некоторые вопросы расчета приемника в целом.

В каждой главе приведены необходимые для решения задач методические указания, расчетные формулы, графики и таблицы. В конце каждой главы приведены типовые задачи, позволяющие преподавателю при модификации исходных данных увеличить количество вариантов задач.

В сборнике задач и упражнений значительное внимание уделено новым и более сложным разделам курса. В частности, подробно рассмотрены СВЧ усилители, усилители промежуточной частоты с распределенной и с сосредоточенной избирательностью, основные характеристики цифровых устройств обработки сигналов.

Представленный сборник ориентирует обучающегося на активное применение средств вычислительной техники. В зависимости от сложности задачи характер применения вычислительной техники может быть различным:
– расчет по формулам с помощью ЭВМ;
– самостоятельное составление простых программ для ЭВМ;
– применение специализированных программ.

Для отдельных задач в конце каждой главы приведены ответы.

В целом, предложенный сборник задач и упражнений должен обеспечить изучение физических основ приема радиосигналов на фоне помех; принципы построения радиоприемных устройств (РПУ) различного назначения; основы теории и расчета отдельных блоков РПУ и их параметров.
1 ОБЩИЕ ПОКАЗАТЕЛИ РАДИОПРИЕМНЫХ УСТРОЙСТВ

Односигнальная избирательность преселектора, содержащего \(n \) идентичных одиночных колебательных контуров, настроенных на резонансную частоту \(f_0 \), определяется следующим образом:

\[
\sigma_n = 20 \log \frac{1}{1 + Q_3 \left(\frac{f}{f_0} - \frac{f_0}{f} \right)^2}^n, \text{ дБ}
\]

(1.1)

где \(Q_3 \) – эквивалентная добротность контура.

При малых расстройках, когда \(\frac{\Delta f}{f_0} \ll 1 \), можно пользоваться более простым выражением

\[
\sigma = 20 \log \frac{1}{1 + Q_3 \left(\frac{\Delta f}{f_0} \right)^2}^n, \text{ дБ.}
\]

(1.2)

Полоса пропускания (по уровню 3 дБ) блока высокой частоты (БВЧ) приемника, состоящего из \(n \) идентичных каскадов с одиночными одинаково настроенными колебательными контурами, равна

\[
\Pi = f_0 d_3 \sqrt{2} - 1,
\]

(1.3)

где \(d_3 = \frac{1}{Q_3} \) – эквивалентное затухание контура.

Коэффициент перестройки по диапазону одиночного колебательного контура с конденсатором переменной емкости (\(C_{K,\text{max}} \ldots C_{K,\text{min}} \)) рассчитывается с учетом емкости монтажа \(C_M \)

\[
K_{\Pi\Pi} = \frac{f_{0,\text{max}}}{f_{0,\text{min}}} = \sqrt{\frac{C_{K,\text{max}} + C_M}{C_{K,\text{min}} + C_M}}.
\]

(1.4)

Динамический диапазон радиоприемного устройства (РПУ) определяют минимальный (\(U_{BX,\text{min}} \)) и максимальный (\(U_{BX,\text{max}} \)) сигналы на входе РПУ, при которых сохраняется качественное воспроизведение принятых сигналов:

\[
\Delta D = 20 \log \frac{U_{BX,\text{max}}}{U_{BX,\text{min}}}, \text{ дБ.}
\]

(1.5)
Задачи

1.1 Определить частоту основного канала и избирательность по побочным каналам приема, если приемник, настроенный на заданную частоту, способен принимать колебания на несущих частотах 465 кГц (чувствительность 1 мВ), 12 МГц (чувствительность 25 мкВ) и 12,93 МГц (чувствительность 250 мкВ).

1.2 В длинноволновом диапазоне вещательного приемника промежуточная частота \(f_{\text{pp}} \) выше частоты принимаемого сигнала. Какие отрицательные последствия будут, если в качестве промежуточной частоты использовать суммарную комбинацию первых гармоник гетеродинного напряжения и сигнала?

1.3 Преселектор приемника перестраивается переменным конденсатором (\(C_{K,\text{min}} = 16 \, \text{мкФ}, C_{K,\text{max}} = 318 \, \text{мкФ} \)). Индуктивность перестраиваемого контура \(L_K = 273 \, \text{мкГн} \), емкость монтажа \(C_M = 20 \, \text{мкФ} \). Рассчитать крайние частоты диапазона перестройки РПУ (\(f_{0\text{min}} \) и \(f_{0\text{max}} \)). На сколько процентов изменятся значения \(f_{0\text{min}} \) и \(f_{0\text{max}} \), если емкость монтажа уменьшить до 10 мкФ?

1.4 РПУ настроен на частоту \(f_0 = 12 \, \text{МГц} \). Преселектор содержит один колебательный контур (усилитель радиочастоты (УРЧ) отсутствует). Как изменится (и во сколько раз) избирательность РПУ по соседнему и зеркальному каналам, если в состав преселектора включить одноконтурный УРЧ? Эквивалентная добротность контуров \(Q_E = 100 \).

1.5 На входе РПУ уровень помех на частоте соседнего канала превышает уровень сигнала на 10 дБ, а на выходе БВЧ приемника отношение сигнала к помехе составляет 30 дБ. Найти избирательность РПУ по соседнему каналу.

1.6 Преселектор вещательного приемника состоит из одного колебательного контура с полосой пропускания в диапазоне длинных волн, равной 8 кГц. В диапазоне коротких волн эквивалентная добротность контура равна 120. Во сколько раз изменится избирательность приемника по зеркальному каналу, если с диапазона длинных волн (\(f_0 = 280 \, \text{кГц} \)) переключаться на диапазон коротких волн (\(f_0 = 12,04 \, \text{МГц} \))?

1.7 БВЧ приемника прямого усиления состоит из четырех идентичных одноконтурных резонансных усилителей. Какая должна быть эквивалентная добротность контуров, чтобы на частоте 1,5 МГц получить полосу пропускания РПУ, равную 6 кГц?

1.8 Необходимо увеличить чувствительность супергетеродинного РПУ. Имеется возможность добавить в приемник один усилительный каскад. Куда целесообразно его включить (до преобразователя частоты или после), если желательно увеличить избирательность: а) по зеркальному каналу; б) по каналу прямого прохождения; в) по соседнему каналу?
Определить ослабление, которое дает одиночный колебательный контур, имеющий собственную частоту 9,7 МГц и эквивалентное затухание 0,02, при следующих расстройках: 10 кГц и 200 кГц. (Ответ: \(\sigma_{10} = 1,01; \sigma_{200} = 2,25 \)).

1.9 Вычислить эквивалентное затухание колебательного контура, при котором обеспечивается ослабление на 20 дБ при расстройке 30 кГц. Резонансная частота контура 200 кГц. (Ответ: \(d_3 = 0,03 \)).

Контрольные вопросы

1. Основные функции радиоприемного устройства.
2. Из каких основных элементов состоит РПУ? Нарисовать структурную схему.
3. С помощью каких элементов структурной схемы выполняются основные функции РПУ?
4. Дать определение основных электрических и эксплуатационных характеристик РПУ.
5. Какие характеристики РПУ находятся в противоречивой взаимосвязи и почему?
6. Основные недостатки РПУ прямого усиления.
7. Особенности структурной схемы супергетеродина РПУ. Достоинства и недостатки.
8. Какие каналы приема супергетеродинного РПУ полезные и вредные?
9. Что нужно сделать для повышения избирательности РПУ по зеркальному каналу?
10. Одинаковы ли задачи одноименных элементов структурных схем приемников прямого усиления и супергетеродинного?
2 ВХОДНЫЕ ЦЕПИ

Радиоприемные устройства могут эксплуатироваться с различными антенными, параметры которых существенно зависят от частоты. Для ослабления влияния антенн на качественные показатели РПУ применяется входная цепь (ВЦ), которая должна наилучшим образом пропускать полезный сигнал и существенно ослаблять мешающие сигналы. Данная задача решается использованием резонансных систем, настраиваемых на частоту полезного сигнала.

Классифицируются ВЦ по следующим признакам:
– по числу колебательных контуров – одноконтурные, двухконтурные и многоконтурные;
– в зависимости от вида связи с антенной – с внутренней емкостной, внешней емкостной, трансформаторной (индуктивной), автотрансформаторной и комбинированной связью.

В большинстве современных РПУ применяются одноконтурные ВЦ. Двухконтурные и многоконтурные ВЦ используются в тех случаях, когда требуется высокая избирательность.

2.1 Принципиальные и эквивалентные схемы одноконтурных входных цепей при немагнитных антенн

Источником сигнала для ВЦ служит антenna, упрощенная эквивалентная схема которой показана на рис. 2.1.

![Рис. 2.1. Упрощенная эквивалентная схема антенны](image)

Электродвигущая сила генератора E_A характеризует электрический сигнал, создавающийся в антенне за счет энергии электромагнитного поля полезного сигнала, имеющего в точке расположения антенны напряженность E_A,

$$E_A = h_d \cdot E,$$

где h_d – действующая высота антенны (для вертикальной проволочной антенны $h_d = (0.5...0.6) h$, где h – высота антенны). Для наружной антенны $h_d = 0.7 h$.

Индуктивность L_A, емкость C_A и активное сопротивление потеря R_A – электрические параметры приемной антенны, зависящие от конструкции антенны. Так, для радиовещательных приемников километровых и гектометровых волн
за стандартные параметры эквивалента внешней проволочной антенны приняты значения:

\[R_A = 25 \text{ Ом}, \quad L_A = 20 \text{ мкГн}, \quad C_A = 200 \text{ пФ}. \]

Для сравнительно коротких антенн \(C_A = (4\ldots8)l, \text{ пФ; } L_A= (0,5\ldots1)l, \text{ мкГн.} \)
Здесь \(l \) – длина провода в метрах. Величина \(R_A \) может меняться в широких пределах в зависимости от конструкции антенны и ее изоляции от окружающих предметов.

На рис. 2.2 приведены основные схемы одноконтурных входных цепей с различными видами связи: внешняя емкостная (рис. 2.2 a), трансформаторная (рис. 2.2 b), автотрансформаторная (рис. 2.2 в) и комбинированная (рис. 2.2 г).

![Рис. 2.2. Основные схемы одноконтурных входных цепей](image)

Для общности всех схем показано автотрансформаторное включение к колебательному контуру входа первого электронного прибора, который представлен входной емкостью \(C_{BX} \) и входной проводимостью \(g_{BX} \) (рис. 2.3 a).

Анализ входной одноконтурной цепи удобно проводить на эквивалентной схеме с автотрансформаторной связью (рис. 2.3), где антenna представлена генератором тока.

Здесь \(y_A = \frac{1}{Z_A} = g_A + j\omega C_A \) учитывает параметры антенны и элемента связи, сопротивление которого зависит от вида связи. Так, для внешнеемкостной связи (рис. 2.2 a) \(Z_{CB} = \frac{1}{j\omega C_{CB}}, \) а при трансформаторной связи (рис. 2.2 b) \(Z_{CB} = r_{CB} + j\omega L_{CB}. \) В схеме с автотрансформаторной связью элементом связи служит часть контурной катушки \(L_A, \) следовательно, \(Z_{CB} = r_{LA} + j\omega L_A. \)
Рис. 2.3. Эквивалентная схема антенны с автотрансформаторной связью

Емкость колебательного контура (рис. 2.2 а)

\[C_K = C + C_N + C_{KAT} + n^2 \cdot C_{BX} , \] \hspace{1cm} (2.2)

где \(C_{KAT} \) – собственная емкость контурной катушки (2…5 пФ).

Активная резонансная проводимость колебательного контура зависит от характеристического сопротивления \(\rho \) и собственной добротности \(Q \) (затухания \(d \))

\[g_K = \frac{d}{\rho} = \frac{1}{Q \rho} . \] \hspace{1cm} (2.3)

Степень связи антенной цепи с контуром характеризуется коэффициентом включения

\[m = \frac{U_1}{U} \approx \frac{L_1}{L} , \] \hspace{1cm} (2.4)

а степень связи колебательного контура со входом следующего каскада определяется коэффициентом включения

\[n = \frac{U_2}{U} \approx \frac{L_2}{L} . \] \hspace{1cm} (2.5)

Внешние для контура реактивные проводимости и емкости \(g_A \) и \(C_{BX} \) вносят в контур параллельно подключенные к нему реактивные составляющие

\[g_A' = m^2 \cdot g_A , \quad C_{BX}' = m^2 \cdot C_{BX} . \] \hspace{1cm} (2.6)

Следовательно, с учетом действия внешних реактивностей получим эквивалентную емкость колебательного контура при условии, что \(g_A = \omega \cdot C_A \)

\[C_3 = C_K + m^2 C_A + n^2 C_{BX} . \] \hspace{1cm} (2.7)

Таким образом, схема, показанная на рис. 2.3 а, упрощается (рис. 2.3 б). При настройке входной цепи на частоту принимаемого сигнала конденсатором
C_2 проводимость контура будет чисто активной и равной g_2:

$$g_2 = m^2 g_A + g_K + n^2 g_{BX}. \quad (2.8)$$

Тогда эквивалентное затухание колебательного контура входной цепи

$$d_2 = g_2 \cdot \rho = g_K \cdot \rho \left(1 + \frac{m^2 g_A}{g_K} + \frac{n^2 g_{BX}}{g_K}\right). \quad (2.9)$$

2.2 Входные цепи приемников с магнитными антенами

В малогабаритных приемниках ДВ и КВ диапазонов используются магнитные рамочные антенны с ферритовыми сердечниками, обладающими высокой магнитной проницаемостью.

В транзисторных приемниках обычно применяются настроенные магнитные антенны, когда индуктивность магнитной антенны используется в качестве индуктивности резонансного контура входной цепи. В этом случае свойства магнитной антенны оцениваются величиной приведенной или эффективной действующей высоты

$$h_{\text{эфф}} = h_d Q = 3,3 \cdot 10^{-3} \omega \cdot a \cdot N \cdot \mu_{\text{эфф}} \cdot \Phi \cdot Q_3,$$

где N – число витков антенной катушки; a – площадь одного витка, м2; $\mu_{\text{эфф}}$ – эффективная магнитная проницаемость сердечника; $\Phi = \Phi_1 \Phi_2$ – коэффициент, зависящий от конструкции антенны; Φ_1 и Φ_2 определяются по графикам (рис. 2.4); Q_3 – добротность нагруженного контура на частоте настройки, равная

$$Q_3 = \frac{\omega_0}{\Pi} = \frac{1}{\rho \cdot G_3} = \frac{1}{\Pi \cdot \rho \cdot C}. \quad (2.11)$$

![Diagram](image)

Рис. 2.4. К определению коэффициентов конструкции антенны

Для значений начальной магнитной проницаемости материала сердечника $\mu_0 = 20\ldots1000$ и отношения длины круглого сердечника к диаметру $l/D = 15\ldots25$ (рис. 2.5) эффективная магнитная проницаемость выражается достаточно точно эмпирической формулой

$$\mu_{\text{эфф}} = \frac{\mu_0}{1 + 0,84 \left(\frac{D}{l}\right)^{1,7} \left(\mu_0 - 1\right)}. \quad (2.12)$$
Рис. 2.5. Антенная катушка индуктивности

Оптимальное отношение $l/D = 20$, так как при дальнейшем увеличении l/D действующая высота уменьшается из-за возрастания потерь в сердечнике и уменьшения добротности контура.

При смещении антенной катушки от середины сердечника (x) и увеличении ширины намотки катушки (a) (рис. 2.5) происходит уменьшение действующей высоты магнитной антенны.

Схемы входных цепей с ферритовыми антеннами различаются видом связи контура с входом следующего каскада. На рис. 2.6 а, б, в, г показаны трансформаторная, автотрансформаторная, внутриемкостная и трансформаторно-емкостная связь соответственно.

Рис. 2.6. Схемы входных цепей с ферритовыми антеннами

Входная цепь может быть представлена эквивалентной схемой (рис. 2.7), где эквивалентная проводимость потерь в антенне

$$g_A \approx \frac{R_A \cdot C}{L} \approx \frac{R_A}{\rho^2}. \quad (2.13)$$

Рис. 2.7. Эквивалентная схема входной цепи
На частоте настройки входной цепи эквивалентная резонансная проводимость контура при трансформаторной связи с нагрузкой

\[g_E = g_A + n^2 \cdot g_H, \quad (2.14) \]

где \(n \) – коэффициент трансформации, равный отношению напряжений на катушке связи и контуре.

Для обеспечения требуемой полосы пропускания \(\Pi_{TP} \) эквивалентная резонансная проводимость вычисляется на нижней частоте диапазона, где емкость контура максимальна

\[g_E = \Pi_{TP} \cdot C_{max}. \quad (2.15) \]

Следовательно, коэффициент связи с нагрузкой (коэффициент трансформации), обеспечивающий требуемую полосу пропускания, равен

\[n = \sqrt{\frac{g_E - g_A}{g_H}} \approx \sqrt{\frac{\Pi_{TP} \cdot C_{max}}{g_H}}. \quad (2.16) \]

Коэффициент передачи ВЦ с магнитной антенной зависит от коэффициента трансформации и эквивалентной резонансной проводимости контура

\[\mathbf{k} = \frac{n}{j \omega L g_E}. \quad (2.17) \]

Напряжение на полезной нагрузке ВЦ с настроенной магнитной антенной

\[U_H = \mathbf{k} E_A = E \cdot h_{\omega} \cdot \mathbf{k}, \quad (2.18) \]

позволяет оценить напряженность поля в точке приема, обеспечивающую номинальную выходную мощность сигнала в приемнике (оценка чувствительности РПУ).

Собственное затухание колебательных контуров ВЦ с ферритовыми антенами меньше по сравнению с обычными контурами без сердечника из-за значительного уменьшения числа витков контурной катушки индуктивности. Так, в диапазоне километровых и гектометровых волн \(d = 0,008…0,01 \), а в декаметровом и метровом – \(d = 0,01…0,02 \).

Эквивалентное затухание колебательного контура ВЦ

\[dE = d \left(1 + n^2 \frac{g_{BX}}{g} \right) = d \left(1 + K_{CB}^2 \frac{\omega_{min} L_{CB}}{d} g_{BX} \right), \quad (2.19) \]

откуда

\[L_{CB} = \frac{\frac{d_E - d}{\omega_{min} \cdot K_{CB}^2 \cdot g_{BX}}} = \frac{2\pi (\Pi_{TP} - \Pi_K)}{\omega \cdot g_{BX} \cdot K_{CB}^2} \]

(2.20)

Здесь \(\Pi_K = \frac{f_{0_{min}}}{Q} = f_{0_{min}} \cdot d \). Как правило, \(K_{CB} \approx 0,6 \).
Выбор связи колебательного контура со входом электронного прибора осуществляется по двум условиям:
1) по заданной полосе пропускания (Π_{TP});
2) по минимальному коэффициенту шума совместно с первым каскадом РПУ.

Первый случай используется в диапазонах километровых и гектометровых волн, когда полоса пропускания ВЦ соизмерима с общей полосой пропускания РПУ, а второй – в диапазонах декаметровых и более коротких волн, где полоса пропускания ВЦ оказывается гораздо шире полосы пропускания РПУ и важнее иметь максимальную чувствительность.

Минимальный коэффициент шума (ω_{min}) входной цепи и первого каскада обеспечивается в том случае, когда ко входу первого каскада от ВЦ подключается вполне определенная проводимость g_{W}. В этом случае

$$L_{CB} = \frac{d}{K_{CB}^2 \cdot \omega \cdot g_{W}}$$

(2.21)

и полоса пропускания ВЦ

$$\Pi = d_{2} \cdot f_{0} = d \cdot f_{0} \left(1 + K_{CB}^2 \frac{\omega}{d} L_{CB} \cdot g_{BX}\right).$$

(2.22)

Так как действующая высота ферритовой антенны зависит от частоты принимаемого сигнала, то удобнее определить коэффициент передачи ВЦ по полю

$$K_{OE} = \frac{U_{1}}{E} = \frac{h_{D} \cdot X_{CB}}{d_{2} \cdot \rho} = \frac{h_{D}}{d_{2}} \frac{K_{CB}}{} \sqrt{L_{CB}}.$$

(2.23)

При использовании автотрансформаторной связи (рис. 2.6 б) $X_{CB} = \omega \cdot L$

$$K_{OE} = \frac{h_{D}}{d_{2}} \cdot \omega \cdot L_{1}.$$

(2.24)

Для ВЦ с внутренней емкостной связью с последующим каскадом (рис. 2.6 в) коэффициент включения входа следующего каскада к колебательному контуру при $C_{CB} \gg C$

$$n = \frac{C}{C + C_{CB}} = \frac{1}{1 + \frac{C_{CB}}{C}} = \frac{1}{1 + C_{CB} \cdot \omega^2 \cdot L} = \frac{1}{1 + \frac{\omega^2}{\omega_{CB}^2}}$$

(2.25)

и резко уменьшается с ростом частоты в процессе перестройки.

Из условия обеспечения требуемой полосы пропускания емкость связи рассчитывается на нижней частоте диапазона и равна

$$C_{CB} = \frac{1}{\omega^2 \cdot L} \left(\sqrt{\frac{g_{BX} \cdot \omega_{min}^2 \cdot L}{2\pi \left(\Pi_{TP} - \Pi_{K}\right)}} - 1\right),$$

(2.26)
а из условия получения минимального коэффициента шума

\[C_{CB} = \frac{\sqrt{g_{III} \cdot \omega_{\text{min}} \cdot L/d}}{\omega^2 \cdot L} - 1. \]

(2.27)

Эквивалентное затухание контура

\[d_\varnothing = d \left[1 + \frac{g_{BX} \cdot \omega_{\text{min}} \cdot L}{(1 + \omega_{\text{min}}^2 \cdot L \cdot C_{CB})^2 \cdot d} \right] \]

откуда

\[\Pi = d_\varnothing \cdot f_0 = d \cdot f_0 \left[1 + \frac{g_{BX} \cdot \omega_{\text{min}} \cdot L}{(1 + \omega_{\text{min}}^2 \cdot L \cdot C_{CB})^2 \cdot d} \right]. \]

(2.29)

Данная схема ВЦ может обеспечить хорошее постоянство полосы пропускания в диапазоне частот и, как следствие, хорошую избирательность.

Так как сопротивление связи \(X_{CB} = 1/\omega \cdot C_{CB} \), то

\[K_{OE} = \frac{h_D}{\omega^2 \cdot C_{CB} \cdot d_\varnothing \cdot L}. \]

(2.30)

Анализ рассмотренных входных цепей с магнитными антенами показывает, что схема с внутренемкостным включением (рис. 2.6. в) в диапазоне частот обеспечивает лучшее постоянство полосы пропускания, а схема с трансформаторным включением обеспечивает лучшую чувствительность, особенно на верхней частоте диапазона. В этой связи емкостную схему целесообразно применять в диапазоне километровых волн для улучшения избирательных свойств, а трансформаторную – в диапазоне декаметровых и более коротких волн для повышения чувствительности РПУ.

В схеме ВЦ с трансформаторно-емкостной связью со входом следующего каскада (рис. 2.6. г) при расчете на требуемую полосу пропускания

\[C_{CB} = \frac{2}{\omega_{\text{min}}^2 \cdot L} \left(\sqrt{\frac{g_{BX} \cdot \omega_{\text{min}}^2 \cdot L}{2\pi (\Pi_{TP} - \Pi_K)} - 1} \right), \]

(2.31)

\[L_{CB} = \frac{\pi \cdot (\Pi_{TP} - \Pi_K)}{K_{CB}^2 \cdot \omega_{\text{min}}^2 \cdot g_{BX}}, \]

(2.32)

\[d_\varnothing = d \left[1 + \left(\frac{K_{CB}^2 \cdot L_{CB}}{L} + \frac{1}{\omega_{\text{min}}^4 \cdot L^2 \cdot C_{CB}^2} \right) \frac{g_{BX} \cdot \omega_{\text{min}} \cdot L}{d} \right], \]

(2.33)

\[K_{OE} = \frac{h_D \cdot K_{CB}}{d_\varnothing} \sqrt{\frac{L_{CB}}{L}} \left(1 + \frac{1}{\omega_{\text{min}}^2 \cdot L_{CB} \cdot C_{CB}} \right). \]

(2.34)
Для обеспечения минимального коэффициента шума

\[
C_{CB} = \sqrt{\frac{K_D \cdot g_{\omega \omega_{\text{max}}} - g_{\omega \omega_{\text{min}}}}{d \cdot \omega_{\text{min}}^2 \cdot L(K_D^4 - 1)}}, \quad (2.35)
\]

\[
L_{CB} = \frac{d \cdot (K_D^4 - 1)}{K_{CB}^2 \cdot K_D \cdot \omega_{\text{min}} (K_D \cdot g_{\omega \omega_{\text{min}}} - g_{\omega \omega_{\text{max}}})}, \quad (2.36)
\]

где \(K_D = \frac{f_{\text{min}}}{f_{\text{max}}} \) — коэффициент перекрытия поддиапазона.

Наилучшее постоянство полосы пропускания и наибольший коэффициент передачи получается при трансформаторно-емкостной связи со входом первого каскада. Выигрыш в коэффициенте передачи по сравнению с трансформаторной связью получается в 3 раза, а с емкостной связью — в 2 раза.

2.3 Входные цепи РПУ дециметрового диапазона

В дециметровом диапазоне воли применяются коаксиальные и полосковые резонансные линии. Так как в большинстве схем входных цепей РПУ используются параллельные резонансные контуры, то основные типы контуров в данном частотном диапазоне — четвертьволновый отрезок замкнутой или полуволновый отрезок разомкнутой линии.

Для уменьшения габаритных размеров высокочастотных блоков геометрическая длина линии выбирается меньше электрической, которая определяется длиной волны принимаемого сигнала. С целью удлинения линии к ее концу подключается конденсатор, предназначенный для перестройки контура по диапазону (рис. 2.8. а). Перестройка контура может осуществляться и за счет перемещения короткозамыкающего плунжера из положения 1 (\(f_0 = f_{0_{\text{max}}} \)) в положение 2 (\(f_0 = f_{0_{\text{min}}} \)), (рис. 2.8 б).

Короткозамкнутый плунжер можно создать электрическим путем, используя переменный конденсатор \(C_K \), подключенный к концу укороченной полуволновой линии (рис. 2.8 в). При минимальном значении емкости \(C_{K_{\text{min}}} \) получается режим короткого замыкания в точке 1 с максимальной резонансной частотой (\(f_0 = f_{0_{\text{max}}} \)). Увеличение емкости \(C_K \) вызывает перемещение точки эквивалентного короткого замыкания вниз до точки 2, где значению \(C_{K_{\text{max}}} \) будет соответствовать минимальная частота диапазона \(f_0 = f_{0_{\text{min}}} \).

Функцию конденсатора переменной емкости может выполнять полупроводниковый прибор (например, вариkap), емкость \(p-n \)-перехода которого изменяется в зависимости от приложенного напряжения.
Связь контура входной цепи с антенной и с входом первого каскада РПУ может быть трансформаторной, емкостной и автотрансформаторной.

Схема одноконтурной входной цепи, выполненная на короткозамкнутом четвертьволновом отрезке линии, представлена на рис. 2.9.

При использовании системы из двух связанных контуров (рис. 2.10) для связи между ними используют отверстия связи в экранирующей перегородке, которые в зависимости от их расположения могут быть эквивалентны либо индуктивной, либо емкостной связи.

Исходные данные для расчета одноконтурной входной цепи: диапазон принимаемых частот f_{min} … f_{max}; сопротивление антенно-фидерной системы $R_A = \frac{1}{\sqrt{g_A}}$; входные параметры первого каскада РПУ g_{BH}, C_{BH}; эквивалентная добротность контура.
Расчет схемы целесообразно вести для средней резонансной частоты диапазона

\[f_{0,cp} = \frac{f_{0,\text{min}} + f_{0,\text{max}}}{2} \]
(2.37)

а затем проверить основные показатели на крайних частотах.

После выбора типа линии (коаксиальная или полосковая) из конструктивных соображений определяются размеры линии, материал подложки и рассчитывается волновое сопротивление \(Z_B \).

Для коаксиальной линии (рис. 2.11 а) с внутренним диаметром \(d_B \), наружным диаметром цилиндрического проводника \(D \)

\[Z_B = 138 \lg \frac{D}{d_B} \]
(2.38)

Рис. 2.11. Варианты конструкций линий связи с антенной

При использовании несимметричной полосковой линии (рис. 2.11 б) с твердым диэлектриком или с воздушным заполнением

\[Z_B = \frac{100 \cdot \pi}{\left(1 + \frac{b}{h}\right) \cdot \sqrt{\varepsilon}} \left(1 - \frac{t}{h}\right). \]
(2.39)

а для симметричной полосковой линии (рис.2.11 в)

\[Z_B = \frac{200 \cdot \left(1 - \frac{t}{h}\right)}{\left(1 + \frac{b}{h}\right) \cdot \sqrt{\varepsilon}}. \]
(2.40)

Здесь \(\varepsilon \) – относительная диэлектрическая проницаемость диэлектрика (при воздушном заполнении \(\varepsilon = 1 \))

В полосковых линиях, заполненных диэлектриком, с достаточной точностью обеспечивается получение волнового сопротивления в пределах 15…200 Ом. Обычно волновое сопротивление принимают равным 50…100 Ом.
Электрическая длина линии для средней частоты диапазона выбирается из расчета

\[K_0 l = \frac{2 \cdot \pi \cdot \sqrt{\varepsilon} \cdot l}{\lambda_0}, \]
(2.41)

где \(\lambda_0 \) – резонансная длина волны ненагруженных короткозамкнутых или разомкнутых линий, связанных с геометрической длиной линии. Так, для короткозамкнутого отрезка линии

\[l = \frac{\lambda_0}{2 \cdot \pi \cdot \sqrt{\varepsilon} \cdot \arctg \frac{1}{b \cdot \omega_0 \cdot C_0}}. \]
(2.42)

где \(C_0 \) – емкость нагрузки, подключаемая на входе линии (рис. 2.12 а), равная

\[C_0 = \frac{1}{2 \cdot \pi \cdot f_0 \cdot b \cdot \tan(K_0 \cdot l)}. \]
(2.43)

Рис. 2.12. К определению длины линии связи

При этом

\[C_0 = C_{K-} + C_{II} + C_{ВХ}' \]
(2.44)

где \(C_{ВХ}' = n^2 \cdot C_{ВХ} \) – входная емкость первого каскада РПУ, пересчитанная к входным зажимам линии.

В длинноволновой части дециметрового диапазона для уменьшения геометрической длины линии на разомкнутом конце линии включается конденсатор \(C_{\sim} \)

\[C_{\sim} = \frac{1}{\omega \cdot b \cdot \tan\left(\frac{l_1 - l}{2 \cdot \pi \cdot \lambda}\right)}, \]
(2.45)

где \(l \) – длина линии, \(l_1 \) – расстояние от емкости \(C_0 \) до узла напряжения стоячей волны.

Резонансная проводимость короткозамкнутого коаксиального резонатора и короткозамкнутого резонатора на полосковых линиях равна

\[g_0 = \frac{r_{II}}{\rho^2}, \]
(2.46)

где \(\rho = \frac{1}{\omega_0 \cdot C} \) – характеристическое сопротивление резонатора, \(r_{II} \) – сопротивление потерь, отнесенное к входу линии
где r_s – удельное поверхностное сопротивление материала линии; $K = \frac{2\pi}{\lambda}$.

Эквивалентное последовательное сопротивление потерь коаксиального резонатора с конденсатором на разомкнутом конце, отнесенное к входу резонатора, равно

$$r_{\Pi} = \frac{r_s \lambda}{8\pi^2} \left(\frac{1}{D} + \frac{1}{d_B}\right) \frac{2Kl + \sin 2K(l - l_1) + \sin 2Kl_1}{\cos^2 Kl_1}$$

(2.48)

Сопротивления потерь симметричной и несимметричной полосковых линий соответственно равны

$$r_{\Pi} = 2b \beta_1 \rho; \quad r_{\Pi} = 2b \beta_2 \rho,$$

(2.49)

$$\rho = \frac{\lambda \left[4\pi\sqrt{\varepsilon} \frac{l}{\lambda} + \sin \left(4\pi\sqrt{\varepsilon} \frac{l}{\lambda} \right) + 2 \right]}{4\pi\sqrt{\varepsilon} \left[1 + \cos \left(4\pi\sqrt{\varepsilon} \frac{l}{\lambda} \right) \right]}.$$

где β_1, β_2 – коэффициенты затухания соответственно в симметричной и несимметричной полосковых линиях, определяющиеся по графикам (рис. 2.13 а, б).

Рис. 2.13. Коэффициенты затухания для полосковых линий
Затухание резонатора на отрезке короткозамкнутой коаксиальной линии

\[d = \frac{2r_{fl}}{b\left(tg Kl + \frac{Kl}{\cos^2 Kl}\right)}. \]

Для коаксиального резонатора с конденсатором на разомкнутом конце

\[d = \frac{r_{s} \lambda}{2\pi^{2}b}\left(1 + \frac{1}{D} - \frac{1}{d_{b}}\right). \]

Для симметричного полоскового резонатора

\[d = \frac{4\beta_{1}\rho}{1 + \left(\frac{4\pi\sqrt{\epsilon}l}{\lambda}\right)\frac{1}{\sin\left(4\pi\sqrt{\epsilon} l/\lambda\right)}}. \]

Затухание резонатора, реализованного на отрезке несимметричной полосковой линии,

\[d = \frac{4\beta_{2}\rho\cotg\left(2\pi\sqrt{\epsilon} \cdot \frac{l}{\lambda}\right)}{1 + \left(\frac{4\pi\sqrt{\epsilon} \cdot \frac{l}{\lambda}}{\sin\left(4\pi\sqrt{\epsilon} \frac{l}{\lambda}\right)}\right)\frac{1}{\sin\left(4\pi\sqrt{\epsilon} \frac{l}{\lambda}\right)}}. \]

Для микрополосковых линий (МПЛ), которые получили наиболее широкое применение в СВЧ диапазоне, длина волны

\[\Lambda = \frac{\lambda}{\sqrt{\epsilon_{\varepsilon}}}. \]

Здесь \(\lambda \) – длина волны в воздухе; \(\epsilon_{\varepsilon} \) – эффективная диэлектрическая проницаемость

\[\epsilon_{\varepsilon} = 0,5 \left[1 + \epsilon + \frac{(\epsilon - 1)}{\sqrt{1 + \frac{10h}{b}}} \right], \]

где \(h \) – толщина подложки; \(b \) – ширина полоски (рис. 2.11 б).

Если любой из размеров МПЛ (\(h \) или \(b \)) приближается к \(\Lambda/4 \), то в линии кроме TEM-волны возникают поверхностные TM- и TE-волны, что приводит к изменению параметров МПЛ. Поэтому рабочая частота МПЛ должна быть ниже критической частоты \(f_{KP} \) поверхностной TE-волны наищего типа

\[f_{KP} = \frac{75}{h\sqrt{\epsilon} - 1}, \]

при этом \(f_{KP} \) измеряется в ГГц; \(h \) – в мм.
Волновое сопротивление МПЛ зависит от \(\varepsilon \) подложки и геометрических размеров линии

\[
Z_B \approx \frac{377}{\sqrt{\varepsilon} \cdot \frac{b}{h} \left[1 + \frac{1,735}{\varepsilon^{0.0724} \left(\frac{b}{h} \right)^{-0.836}} \right]}, \text{ Ом}.
\]

(2.57)

Можно воспользоваться приближенным выражением для нахождения волнового сопротивления МПЛ (с точностью 5…10%)

\[
Z_B \approx \frac{314}{\sqrt{\varepsilon} \cdot \left(1 + \frac{b}{h} \right)},
\]

(2.58)

откуда определяется требуемое значение

\[
\frac{b}{h} = 314 \frac{Z_B}{\sqrt{\varepsilon}} - 1.
\]

(2.59)

Потери мощности в МПЛ обусловлены в основном поглощением мощности в проводниках линии (потери проводимости \(\alpha_H \)) и в диэлектрике (диэлектрические потери \(\alpha_D \))

\[
\alpha = \alpha_H + \alpha_D.
\]

(2.60)

Погонные потери проводимости \(\alpha_H \) приближенно оцениваются следующим соотношением

\[
\alpha_H = 8,68 \frac{R_H}{b \cdot Z_B}, \text{ дБ/ед.длины},
\]

(2.61)

gде \(R_H \) – поверхностное сопротивление проводников МПЛ, представляющее собой сопротивление части поверхностного слоя (скин-слой) пленочного проводника толщиной \(\delta_C \) в форме квадрата (□) и равное

\[
R_H = \frac{1}{\sigma \cdot \delta_C} = \sqrt{\frac{\omega \mu_0 \mu}{2\sigma}}, \text{ Ом/□},
\]

(2.62)

\[
\delta_C = \sqrt{\frac{2}{\omega \sigma \mu_0 \mu}}.
\]

(2.63)

Здесь \(\sigma \) – удельная проводимость проводника, См/м; \(\omega \) – рабочая частота; \(\mu_0 = 1,256 \cdot 10^{-6} \text{ Гн/м} \) – магнитная проницаемость вакуума; \(\mu \) – относительная магнитная проницаемость проводника.
Удельная проводимость и произведение толщины скин-слоя δ_C на \sqrt{f} для некоторых металлов приведены в табл. 2.1.

Таблица 2.1

<table>
<thead>
<tr>
<th>Металл</th>
<th>Серебро</th>
<th>Медь</th>
<th>Золото</th>
<th>Алюминий</th>
<th>Вольфрам</th>
<th>Молибден</th>
<th>Платина</th>
<th>Хром</th>
<th>Тантал</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma \cdot 10^{-7}$, См/м</td>
<td>6,17</td>
<td>5,8</td>
<td>4,1</td>
<td>3,72</td>
<td>1,78</td>
<td>1,76</td>
<td>0,94</td>
<td>0,77</td>
<td>0,64</td>
</tr>
<tr>
<td>$\sigma_C \sqrt{f}$, мкм\timesГГц$^{1/2}$</td>
<td>2,03</td>
<td>2,09</td>
<td>2,49</td>
<td>2,61</td>
<td>3,76</td>
<td>3,8</td>
<td>5,2</td>
<td>5,75</td>
<td>6,26</td>
</tr>
</tbody>
</table>

Погонные диэлектрические потери в подложке МПЛ определяются следующим образом:

$$
\alpha_D = 27,3 \frac{\varepsilon \tan \delta}{\Lambda} \frac{1+10\frac{h}{b}+1}{\varepsilon + \sqrt{1+10\frac{h}{b}-1}}, \text{дБ/см (2.64)}
$$

где δ – угол потерь диэлектрика подложки.

В монолитных интегральных схемах (ИС), выполненных на подложках из полупроводника, суммарные погонные потери α определяются в основном диэлектрическими потерями полупроводника

$$
\alpha = \frac{Z_b \times b}{2\rho h}, \text{дБ/см (2.65)}
$$

где ρ – удельное сопротивление проводника, Ом·см.

В МПЛ, использующих высококачественные диэлектрические подложки, диэлектрические потери пренебрежимо малы по сравнению с потерями проводимости.

Подложка МПЛ должна обладать достаточно большой диэлектрической проницаемостью ε, ее стабильностью в широком диапазоне частот и температур, малыми потерями, высокой теплопроводностью. Некоторые характеристики материалов подложки приведены в таблице 2.2.

Толщину подложки h следует брать по возможности как можно меньше (для уменьшения потерь на излучение и для повышения критической частоты f_{KP}). Тем не менее, при заданной величине волнового сопротивления Z_b чрезмерное уменьшение толщины подложки h влечет за собой уменьшение ширины полоскового проводника b (следовательно, увеличение потерь α_{II}). Обычно величина α_{II} является определяющей при выборе размера h, для которого существует стандартный ряд значений: $h = 0,25; 0,5; 0,75; 1; 1,5$ мм. Ширина основания МПЛ

26
(ширина заземленной поверхности подложки) должна быть больше \(b + 2h \). Отсюда следует, что минимальное расстояние между двумя полосковыми проводниками нужно выбирать больше удвоенной толщины подложки (около \(4h \)).

Таблица 2.2

<table>
<thead>
<tr>
<th>Материал подложки</th>
<th>(\varepsilon)</th>
<th>(\tan \delta \cdot 10^4)</th>
<th>Теплопроводность, Вт·(м·°С)(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Сапфир</td>
<td>9,9</td>
<td>1</td>
<td>25,1</td>
</tr>
<tr>
<td>Поликор</td>
<td>9,8</td>
<td>1</td>
<td>25,1...37,6</td>
</tr>
<tr>
<td>Брокерит - 9</td>
<td>6,8</td>
<td>6</td>
<td>167</td>
</tr>
<tr>
<td>Кварц</td>
<td>3,75</td>
<td>1</td>
<td>5,9...9,6</td>
</tr>
<tr>
<td>Ситалл СТ-38-1</td>
<td>7,25</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>Ситалл КП-15</td>
<td>15,0</td>
<td>5</td>
<td>29</td>
</tr>
<tr>
<td>Кремний</td>
<td>11,7</td>
<td>150</td>
<td>155</td>
</tr>
<tr>
<td>Арсенид галлия</td>
<td>13,3</td>
<td>–</td>
<td>41,9</td>
</tr>
<tr>
<td>Ферриты</td>
<td>9…16</td>
<td>5…100</td>
<td>25,1</td>
</tr>
</tbody>
</table>

МПЛ нашли широкое применение в качестве трансформатора полного сопротивления. Комплексное сопротивление нагрузки \(Z_N = R_H + jX_H \) с помощью отрезка МПЛ длиной \(l \), обладающего волновым сопротивлением \(Z_V \), может быть согласовано с сопротивлением генератора \(R_G \) (рис. 2.14 а)

\[
Z_{BG} = Z_B + \frac{Z_H + jZ_B \tan K l}{Z_B + jZ_H \tan K l},
\]

где \(K = 2\pi/\lambda \) – волновое число.

Из условия узкополосного согласования \(Z_{BG}(\omega_0) = R_G \) получим

\[
Z_B = \sqrt{\frac{R_H (R_G - R_H) - X_H^2}{\left(1 - \frac{R_H}{R_G}\right)}} ,
\]

\[
l = \frac{1}{K} \arctg \frac{Z_B(R_G - R_H)}{R_G X_H}_.
\]
При активном сопротивлении нагрузки \((Z_H = R_H) \) для согласования \(R_H \) с \(R_G \) используется четвертьволновый трансформатор \((l = \lambda/4) \) полного сопротивления, при этом

\[
Z_B = \sqrt{R_H R_G}, \quad \quad (2.69) \]

\[
Z_{BX} = \frac{Z_{B1}^2}{Z_H}, \quad \quad (2.70)
\]

Четвертьволновый шлейф в режиме короткого замыкания на выходе \((Z_H = 0) \) имеет \(Z_{BX} = \infty \). Такой шлейф эквивалентен параллельному колебательному контуру. В режиме холостого хода \((Z_H = \infty) \) \(Z_{BX} = 0 \). В этом случае шлейф эквивалентен последовательному колебательному контуру.

Если согласование \(Z_H \) с \(R_G \) одним отрезком МПЛ физически нереализуемо \((b \text{ и } l \text{ слишком малы или велики})\), то используется двухступенчатый трансформатор полного сопротивления, состоящий из двух четвертьволновых отрезков МПЛ с различными волновыми сопротивлениями (рис. 2.14 б).

Для двух четвертьволновых сопротивлений \((l_1 = \frac{\lambda_1}{4}, l_2 = \frac{\lambda_2}{4})\)

\[
Z_{BX} = \left(\frac{Z_{B2}}{Z_{B1}} \right)^2 \cdot Z_H \quad \quad (2.71)
\]

При активном сопротивлении нагрузки \((Z_H = R_H) \) для выполнения узкополосного согласования \(Z_{BX} (\omega_0) = R_G \) следует выбрать легко реализуемое значение \(Z_{B1} \) и рассчитать необходимое волновое сопротивление

\[
Z_{B2} = Z_{B1} \sqrt{\frac{R_G}{R_H}}. \quad \quad (2.72)
\]

2.4 Согласующие цепи

Непосредственное подключение нагрузки с комплексным сопротивлением \(Z_H \) к генератору с комплексным сопротивлением \(Z_G \) в общем случае не является оптимальным с точки зрения получения большого коэффициента передачи по мощности и малого коэффициента стоячей волны, что особенно важно в диапазоне СВЧ.

Поэтому между генератором и нагрузкой включают согласующую цепь (СЦ), как показано на рис. 2.15 и 2.16.

В качестве генератора чаще всего выступает антенна или подводящие линии, а в качестве нагрузки – активный элемент последующего каскада. Основное назначение СЦ заключается в обеспечении согласования на входе и (или) выходе.
Кроме этого, СЦ решает задачу предварительной фильтрации сигнала на фоне помех.

Различают два режима согласования генератора с нагрузкой: узкополосное – согласование на фиксированной частоте; широкополосное – согласование в диапазоне частот.

Рассмотрим узкополосное согласование генератора с нагрузкой на частоте \(\omega = \omega_0 \). Известно, что условием передачи максимальной мощности в нагрузку является комплексное согласование на входе

\[
Z_{\text{ВХ}}(\omega_0) = Z^*_r(\omega_0),
\]

где \(Z^*_r(\omega_0) \) – комплексно-сопряженное сопротивление генератора.

Пусть СЦ представляет пассивную цепь из идеальных реактивных элементов, \(y \) – параметры которой чисто мнимые величины

\[
y_{11} = jb_{11}, \quad y_{12} = jb_{12}, \quad y_{22} = jb_{22},
\]

В соответствии с (2.73) получаем два скалярных уравнения

\[
g_1 = \frac{b_{12}^2 g_H}{g_H^2 + (b_H + b_{22})^2}, \quad b_1 = -\frac{b_{12}^2 (b_H + b_{22})}{g_H^2 + (b_H + b_{22})^2},
\]

\[
y_H = Z_{H}^{-1} = g_H + jb_H, \quad y_1 = Z_{r}^{-1} = g_r + jb_r.
\]

Для однозначного определения \(b_{11}, b_{12} \) и \(b_{22} \) добавим к (2.75) еще одно условие

\[
b_{22} = -b_H,
\]

при котором коэффициент передачи СЦ имеет максимум на частоте \(\omega_0 \). Тогда из (2.75) находим

\[
b_{11} = -b_r, \quad b_{12} = \pm \sqrt{g_r g_H}.
\]

В частном случае для СЦ в виде простейшей П-образной схемы, состоящей из реактивных элементов (рис. 2.16), мнимые части \(y \)-параметров равны

\[
b_{11} = B_1 + B_3, \quad b_{22} = B_2 + B_3, \quad b_{12} = b_{21} = -B_3,
\]

Тогда из (2.76), (2.77) получаются выражения для определения значений параметров элементов схемы на рис. 2.16

\[
B_3 = \pm \sqrt{g_1 g_H}, \quad B_1 = -B_3 - b_r, \quad B_2 = -B_3 - b_H.
\]
Знакам «плюс» и «минус» соответствует реализация элемента y_3 в виде конденсатора или катушки индуктивности соответственно.

На резонансной частоте модуль сквозного коэффициента передачи СЦ (рис. 2.15)

$$K_0 = \frac{U_{H}}{E_{H}} = \frac{1}{2\sqrt{g_{H}g_{H}}}\left|Z_{T}(\omega_0)\right|.$$

(2.80)

Рассмотрим широкополосное согласование, которое применяется в приемниках, работающих в диапазоне частот.

При наличии комплексной нагрузки Z_h (рис. 2.15) условие согласования (2.73) не может точно выполняться в конечном интервале частот $\Delta f = f_B - f_H$, где f_B и f_H - верхняя и нижняя границы частотного диапазона. Мерой точности согласования служит коэффициент отражения от входного сопротивления

$$\Gamma_{BX} = \frac{Z_{BX} - Z_{T}}{Z_{BX} + Z_{T}},$$

(2.81)

который связан с коэффициентом стоячей волны по напряжению

$$K_{CBV} = \frac{1 + |\Gamma_{BX}|}{1 - |\Gamma_{BX}|}.$$

(2.82)

Пусть генератор имеет активное сопротивление $Z_T = R_T$, а сопротивление нагрузки комплексное Z_h. При $\Gamma_{BX} = 0$ будет согласование и в нагрузку передается мощность, равная номинальной мощности генератора $P_{T_{ном}}$ (чисто реактивные СЦ обладают единичным коэффициентом передачи по мощности). Если $\Gamma_{BX} \neq 0$, то в нагрузку передается меньшая мощность, равная

$$P_{H} = T(\omega)P_{T_{ном}},$$

(2.83)

где $T(\omega) = 1 - |\Gamma_{BX}(\omega)|^2$ - функция передачи.

Потребуем, чтобы частотная характеристика (ЧХ) СЦ была прямоугольной (рис. 2.17), для которой $\Gamma_{BX} = \Gamma_{min}$ в пределах полосы частот Δf и $\Gamma_{BX} = 1$ вне ее.

Рис. 2.17. Прямоугольная ЧХ

Рис. 2.18. К расчету СЦ

"Концы"
Тогда, если Z_H представляет RC- или RL-цепи (рис. 2.18), максимально допустимая полоса согласования определяется формулой Боде-Фоно

$$
\Delta f_{\text{max}} = \frac{1}{2\tau H \ln \Gamma_{\min}^{-1}},
$$

здесь $\tau_H = R_H C_H$ для цепи рис. 2.18 a и $\tau_H = L_H / R_H$ для цепи на рис. 2.18 b.

Для физически реализуемых цепей всегда должно выполняться условие $\Delta f \leq \Delta f_{\text{max}}$, причем равенство справедливо для СЦ, реализованной из бесконечно большого числа звеньев.

Для синтеза СЦ задаются: Γ_{\min}, центральная частота f_0, полоса частот Δf, сопротивление генератора R_f и параметры нагрузки R_H, C_H (или L_H). Сначала по заданному Γ_{\min} с учетом (2.82) рассчитывается KCB_U и находится параметр $X = 1 / \sqrt{KCB_U - 1}$. Далее определяются τ_H по известным R_H, C_H (или L_H) и полоса частот, в которой осуществляется согласование

$$
\Delta f_{\text{СОГЛ}} = \frac{1}{\pi \tau X \sqrt{2}}.
$$

Если $\Delta f_{\text{СОГЛ}}$ получается меньше заданной, то необходимо либо увеличить Γ_{\min}, либо увеличить количество звеньев в СЦ. В том случае, когда $\Delta f_{\text{СОГЛ}}$ на много превышает заданную Δf, следует либо уменьшить Γ_{\min}, либо перейти к СЦ с меньшим числом звеньев.

Синтез СЦ проводится в два этапа. Сначала требуемая частотная характеристика $T(\omega)$ аппроксимируется, например, полиномами Баттерворта или Чебышева, а затем подбирается соответствующая электрическая цепь. Процедура синтеза аналогична синтезу полосовых фильтров, для которых используются табулированные значения идеализированных реактивных элементов низкочастотных прототипов.

Если рассчитанная СЦ согласована с активным сопротивлением R_0, которое сильно отличается от заданного сопротивления R_f, то между генератором и СЦ необходимо включить идеальный трансформатор (ИТ) полного сопротивления (рис. 2.19) с коэффициентом трансформации $n = \sqrt{R_f / R_0}$.

Рис. 2.19. Использование идеального трансформатора полного сопротивления
Примеры решения задач

Пример 2.1. Рассчитать ослабление, которое дает одиночный колебательный контур, настроенный на резонансную частоту \(f_0 = 9.7 \text{ МГц} \) при отстройке на 10 кГц и 200 кГц. Эквивалентное затухание контура \(d_3 = 0.02 \).

Решение.
1. Определяем обобщенную расстройку для 10 и 200 кГц:

\[
\xi_{10} = \frac{1}{d_3} \left(\frac{f}{f_0} - \frac{f_0}{f} \right) = \frac{1}{0.02} \left(\frac{9700 + 10}{9700} - \frac{9700}{9700 + 10} \right) = 0.1.
\]

\[
\xi_{200} = \frac{1}{0.02} \left(\frac{9700 + 200}{9700} - \frac{9700}{9700 + 200} \right) = 2.
\]

2. Находим ослабление, соответствующее полученным расстройкам,

\[
d_{10} = \sqrt{1 + \xi_{10}^2} = \sqrt{1 + 0.01} = 1.01,
\]

\[
d_{200} = \sqrt{1 + \xi_{200}^2} = \sqrt{1 + 2^2} = 2.25.
\]

Таким образом, одиночный колебательный контур в декаметровом диапазоне волн практически не дает ослабления соседнего канала (отстройка на 10 кГц).

Пример 2.2. Определить, во сколько раз при расстройке 10 кГц ослабление двухконтурной избирательной системы с фактором связи \(\eta = 1 \) больше, чем у одиночного колебательного контура. Резонансная частота \(f_0 = 465 \text{ кГц} \), эквивалентное затухание контуров \(d_3 = 0.015 \).

Решение.
1. Так как \(\frac{\Delta f}{f_0} = \frac{10}{465} < 0.25 \), то обобщенная расстройка для 10 кГц равна

\[
\xi = \frac{2\Delta f}{f_0 d_3} = \frac{2 \cdot 10}{465 \cdot 0.015} = 2.9.
\]

2. Для одиночного колебательного контура уравнение обобщенной резонансной кривой:

\[
d_1 = \sqrt{1 + \xi^2} = \sqrt{1 + 2.9^2} = 3.
\]

3. Для двухконтурной избирательной системы при критической связи

\[
d_2 = \frac{\sqrt{(1 + \eta^2 - \xi^2)^2 + 4 \xi^2}}{1 + \eta^2} = \frac{\sqrt{(1 + 1^2 - 2.9^2)^2 + 4 \cdot 2.9^2}}{1 + 1^2} = 8.6.
\]
4. Искомое изменение ослабления

\[
\frac{d_2}{d_1} = \frac{8.6}{3} = 2.86.
\]

Таким образом, ослабление, создаваемое в двухконтурной связанной системе при критической связи, почти в 3 раза больше ослабления в одиночном колебательном контуре.

Пример 2.3. Определить, во сколько раз для расстройки, равной полосе пропускания, ослабление, обеспечиваемое двухконтурной избирательной системой при критической связи между контурами, больше ослабления, создаваемого одиночным колебательным контуром.

Решение.
1. Так как для одиночного колебательного контура уровню отсчета полосы пропускания соответствует обобщенная расстройка \(\xi_1 = 1 \), то расстройке, равной полосе пропускания, будет соответствовать обобщенная расстройка \(\xi = 2 \).
2. Ослабление, соответствующее \(\xi = 2 \), для одиночного колебательного контура

\[
d_1 = \sqrt{1 + \xi^2} = \sqrt{1 + 2^2} = 2.2.
\]
3. Для двухконтурной резонансной системы при критической связи уровню отсчета полосы пропускания \(d = 1.41 \) будет соответствовать \(\xi_1 = 1.41 \). Поэтому расстройке, равной полосе пропускания, будет соответствовать обобщенная расстройка \(\xi = 2.82 \).
4. Ослабление, соответствующее \(\xi = 2.82 \), для двухконтурной связанной системы

\[
d_2 = \frac{\sqrt{(1+\eta^2 - \xi^2)^2 + 4\xi^2}}{1+\eta^2} = \frac{\sqrt{(1+1 - 2.82^2)^2 + 4 \cdot 2.82^2}}{2} = 4.1.
\]
5. Ослабление двухконтурной избирательной системы по сравнению с ослаблением в одном колебательном контуре будет больше

\[
\frac{d_2}{d_1} = \frac{4.1}{2.2} = 1.9.
\]
Пример 2.4. Как изменятся максимальный резонансный коэффициент передачи входной цепи и эквивалентное затухание, если при \(g_{ВХ} = 10 \) \(g_k \) уменьшить коэффициент включения \(n \) с 1 до 0,47?

Решение.
1. Определяем отношение резонансного коэффициента усиления при коэффициенте включения \(n = 1 \) \((K_{01})\) к коэффициенту усиления для \(n = 0,47 \) \((K_{02})\)

\[
\frac{K_{01}}{K_{02}} = \frac{1 + \frac{g_{ВХ}}{g_k}}{1 + \frac{g_{ВХ}}{g_k}} = \frac{1 + 10}{1 + 0,47^2 + 10} = 0,87.
\]

2. Рассчитываем отношение эквивалентных затуханий при \(n = 1 \) \((d_31)\) и \(n = 0,47 \) \((d_{32})\)

\[
\frac{d_{32}}{d_{31}} = \frac{1 + n^2 \frac{g_{ВХ}}{g_k}}{1 + g_{ВХ}/g_k} = \frac{1 + 0,47^2 \cdot 10}{1 + 10} = 0,29.
\]

Таким образом, отношение коэффициента включения колебательного контура к входу следующего каскада от 1 до 0,47 приводит к уменьшению эквивалентного затухания в 3,4 раза.

Пример 2.5. Эквивалентная добротность контура \(Q_3 = 100 \). Контур связан с антенной через емкость \(C_{CB} = 15 \) пФ. Емкость контура \(C_K = 250 \) пФ. Найти коэффициент передачи входной цепи, если \(C_A = 200 \) пФ.

Решение.
1. Емкость, вносимая из антенны в контур,

\[
C'_A = C_A \cdot C_{CB} = \frac{C_A \cdot C_{CB}}{C_A + C_{CB}} = \frac{15 \cdot 200}{15 + 200} = 14 \text{ пФ}.
\]

2. Эквивалентная емкость контура

\[
C_3 = C'_A + C_K = 14 + 250 = 264 \text{ пФ}.
\]

3. Коэффициент передачи входной цепи

\[
K_0 \approx Q_3 \frac{C'_A}{C_3} = 100 \cdot \frac{14}{264} = 5,3.
\]

Пример 2.6. Определить параметры входной цепи с внешнеемкостной связью при следующих исходных данных: \(f_{min} = 9,5 \) МГц; \(f_{max} = 12 \) МГц; \(L_{amin} = 1 \) мкГн; \(L_{amax} = 1,1 \) мкГн; \(C_{amin} = 6 \) пФ; \(C_{amax} = 8 \) пФ; \(r_A = 0,3 \) Ом; \(L = 5 \) мкГн; \(d_{CB} = 0,04; \) \(d = 0,015; \) \(d_3 \leq 0,03 \). В первом каскаде усилителя радиочастоты используется транзистор с параметрами: \(I_K = 1 \) мА; \(C_{ВХ} = 116 \) пФ (на частоте 9,5 МГц); \(g_{ВХ} = 3,5 \) мСм; \(C_{ВХ} = 105 \) пФ (на частоте 12 МГц); \(g_{ВХ} = 4,8 \) мСм.
Решение.
1. Определяем минимальную эквивалентную емкость контура

\[
C_{min} = \frac{1}{\omega_{max}^2 L} = \frac{1}{(6,28 \cdot 12 \cdot 10^6)^2 \cdot 5 \cdot 10^{-6}} = 35,5 \text{ пФ.}
\]

2. Вычисляем емкость конденсатора связи при допустимой расстройке

\[
C_{CBA} = C_{Amin} \sqrt{\frac{d_2 C_{min} / C_{Amin}}{C_{Amx} - 1}} = 6 \sqrt{\frac{0,03 \cdot 35,5}{6 \cdot \frac{8}{6} - 1}} = 4 \text{ пФ.}
\]

3. Для компенсации расстройки начальную емкость входного колебательного контура необходимо уменьшить на

\[
\Delta C = 0,5 C_{Amin} \left(\frac{1}{C_{Amin}} + \frac{1}{C_{Amx}} - \frac{1}{1 + \frac{1}{C_{Amin} / C_{CB}}} \right) = 0,5 \cdot 6 \left(\frac{1}{6} + \frac{1}{4} + \frac{1}{8} \right) = 2,8 \text{ пФ.}
\]

4. Так как \(\delta_E / \delta = 2 \), то для обеспечения необходимого эквивалентного затухания контура следует применить режим согласования с коэффициентом включения транзистора в контур на верхней частоте диапазона

\[
n = \sqrt{\frac{g}{g_{BX}}} = \sqrt{\frac{d / \rho}{g_{BX}}} = \sqrt{\frac{0,015 / 6,28 \cdot 12 \cdot 10^6 \cdot 5 \cdot 10^{-6}}{4,8 \cdot 10^{-3}} = \frac{4 \cdot 10^{-5}}{4,8 \cdot 10^{-3}}} = 0,09.
\]

5. Находим эквивалентное затухание контура в начале диапазона \((f = 9,5 \text{ МГц})\)

\[
d_{E,9,5} = d \left(1 + \frac{n^2 g_{BX}}{g_K} \right) = 0,015 \left(1 + 0,091^2 \frac{3,5 \cdot 10^{-3}}{4 \cdot 10^{-5}} \right) = 0,0241
\]

и в конце диапазона \((f = 12 \text{ МГц})\)

\[
d_{E,12,0} = 0,015 \left(1 + 0,091^2 \frac{4,8 \cdot 10^{-3}}{4 \cdot 10^{-5}} \right) = 0,03.
\]

6. Так как резонансный коэффициент передачи входной цепи уменьшается с уменьшением \(C_A \), то рассчитываем его значение для \(C_{Amin} \) в начале диапазона

\[
K_{09,5} = \omega^2 \frac{C_{Amin} \cdot C_{CB}}{C_{Amin} + C_{CB}} \frac{nL}{d_2} = (6,28 \cdot 9,5 \cdot 10^6)^2 \cdot 6 \cdot 4 \cdot 10^{-12} \cdot 0,091 \cdot 5 \cdot 10^{-6} = 0,14,
\]

\[
K_{012,0} = (6,28 \cdot 12 \cdot 10^6)^2 \cdot 6 \cdot 4 \cdot 10^{-12} \cdot 0,091 \cdot 5 \cdot 10^{-6} = 0,21.
\]
Пример 2.7. Определить параметры входной цепи с трансформаторной связью с антенной для транзисторного приемника при следующих исходных данных: \(f_{\text{min}} = 9,5 \) МГц; \(f_{\text{max}} = 12 \) МГц; \(L = 5 \) мкГн; \(d_{CB} = 0,04; \ d_{K} = 0,015; \ d_{3} \leq 0,03 \). Параметры антенны: \(L_{A \text{ min}} = 1 \) мкГн; \(L_{A \text{ max}} = 1,1 \) мкГн; \(C_{A \text{ min}} = 6 \) пФ; \(C_{A \text{ max}} = 8 \) пФ; \(r_A \approx 0,3 \) Ом. Параметры транзистора при \(I_K = 1 \) мА: на частоте 9,5 МГц, \(C_{B \text{X}} = 116 \) пФ, \(g_{B \text{X}} = 3,5 \) мСм; на частоте 12 МГц \(C_{B \text{X}} = 105 \) пФ; \(g_{B \text{X}} = 4,8 \) мСм.

Решение.

1. Выбираем \(f'_{A \text{ min}} = 0,7 \times f_{A \text{ min}} = 0,7 \times 9,5 = 6,7 \) МГц

2. Рассчитываем индуктивность катушки связи на этой частоте

\[
L_{CB} = \frac{1}{\left(\omega'_{A \text{ min}}\right)^2} - L_{A \text{ min}} = \frac{1}{\left(6,28 \times 6,7 \times 10^6\right)^2 \times 6 \times 10^{-12}} - 1 \times 10^{-6} = 92 \text{ мкГн}
\]

3. Вычисляем резонансную частоту антенной цепи

\[
f'_{A \text{ min}} = \frac{1}{2\pi \sqrt{L_{CB} \times C_{A \text{ max}}}} = \frac{1}{2\pi \sqrt{92 \times 6 \times 10^{-6} \times 8 \times 10^{-12}}} = 5,9 \text{ МГц}
\]

4. Определяем сопротивление потерь катушки связи

\[
r_{CB} = d_{CB} \times \omega \times L_{CB} = 0,04 \times 6,28 \times 9,5 \times 10^6 \times 92 \times 10^{-6} = 220 \text{ Ом}
\]

5. Так как \(r_{CB} \) значительно больше \(r_A \), то можно принять

\[
d'_{A} = \frac{R_A + r_{CB}}{\omega \times L_{CB}} \approx \frac{r_{CB}}{\omega \times L_{CB}} = d_{CB}
\]

6. Находим проводимость контура на нижней частоте диапазона

\[
q_{9,5} = \frac{d}{\rho} = \frac{0,015}{6,28 \times 9,5 \times 10^6 \times 5 \times 10^{-6}} = 5 \times 10^{-5} \text{ См.}
\]

и на верхней частоте диапазона

\[
q_{12} = \frac{d}{\rho} = \frac{0,015}{6,28 \times 12 \times 6 \times 10^6 \times 5 \times 10^{-6}} = 4 \times 10^{-5} \text{ См.}
\]

7. Определяем

\[
A = \left(\frac{f'_{A \text{ min}}}{f_{\text{max}}}\right)^2 = \left(\frac{5,9}{12}\right)^2 = 0,244; \ B = \left(\frac{f'_{A \text{ max}}}{f_{\text{min}}}\right)^2 = \left(\frac{6,7}{9,5}\right)^2 = 0,497
\]

8. Рассчитываем допустимый коэффициент связи, при котором расстройка будет меньше допустимой

\[
K'_{CB \Delta f} \leq \sqrt{\frac{2d_{3} (1 - A)(1 - B)}{B - A}} = \sqrt{\frac{2 \cdot 0,03 (1 - 0,244)(1 - 0,497)}{0,497 - 0,244}} = 0,3.
\]

9. Так как задано допустимое эквивалентное затухание, то проверяем возможность получения наибольшего коэффициента передачи и выбираем коэф-
факторы включения. Для этого найдем проводимость антенной цепи из выражения

\[
g'_A = \frac{r'_A}{(Z'_A)^2} \approx \frac{R_A + r_{CB}}{(\omega L_{CB})^2}
\]

В данном случае \(r_A \ll r_{CB}\), поэтому \(g'_A \approx \frac{d_{CB}}{\omega L_{CB}}\)

\[
m = \frac{\delta L_{CB}}{2\delta_{CB}L} \left(\frac{d_2}{d_K} - 1 \right) = \sqrt{\frac{0,015 \cdot 0,03}{2 \cdot 0,03 \cdot 5 \cdot (0,015 - 1)}} = 2,14.
\]

10. Для полученного коэффициента включения находим коэффициент связи между катушками

\[
K_{CB} = m \frac{L}{L_{CB}} = 2,14 \sqrt{\frac{5 \cdot 10^{-6}}{92 \cdot 10^{-6}}} = 0,5.
\]

Так как данное значение больше допустимого за расстройки (\(K_{CB} > K_{CBf}\)), то окончательно выбираем \(K_{CB} = 0,33\).

11. Для обеспечения компенсации расстройки индуктивность контурной катушки входной цепи необходимо взять больше на величину

\[
\Delta L = 0,5K^2_{CB}L \left(\frac{1}{1 - A} + \frac{1}{1 - B} \right) = 0,5 \cdot 0,3^2 \cdot 5 \cdot 10^{-6} \left(\frac{1}{1 - 0,244} + \frac{1}{1 - 0,497} \right) = 0,75 \cdot 10^{-6}, \text{ Гн.}
\]

Таким образом, принимаем индуктивность входной цепи

\[
L_{BI} = L + \Delta L = 5 \cdot 10^{-6} + 0,75 \cdot 10^{-6} = 5,75 \text{ мкГн.}
\]

12. При заданном эквивалентном затухании \(\delta_\omega\) определяем коэффициент включения \(n\) на верхней частоте диапазона, так как \(g_{B\omega}\) увеличивается с частотой

\[
n = \frac{d}{g_{B\omega} \Phi_{\max}} \left(\frac{d_2}{d_K} - 1 - K^2_{CB} \frac{d_{CB}}{d_K} \right) =
\]

\[
= \sqrt{\frac{0,015}{4,8 \cdot 10^{-3} \cdot 6,28 \cdot 12 \cdot 10^6 \cdot 5,75 \cdot 10^{-6} \left(\frac{0,03}{0,015} - 1 - 0,3^2 \frac{0,04}{0,015} \right)}} = 0,075.
\]

13. Находим для частоты \(f_{\text{min}} = 9,5\) МГц

\[
d_{39,5} = d_K \left[1 + K^2_{CB} \frac{d_{CB}}{d_K} + \frac{n^2 g_{B\omega} \omega L}{d_K} \right] =
\]

\[
= 0,015 \left(1 + 0,3^2 \frac{0,04}{0,015} + \frac{0,075^2 \cdot 3,5 \cdot 10^{-3} \cdot 6,28 \cdot 9,5 \cdot 10^6 \cdot 5,75 \cdot 10^{-6}}{0,015} \right) = 0,026.
\]

37
14. Рассчитываем значения коэффициента передачи для крайних частот диапазона, полагая \(f_A' = f_{A_{\text{min}}} \)

\[
K_{09.5} = \frac{K_{CB} L}{d} \left[1 - \left(\frac{f_A'}{f} \right)^2 \right] = \frac{L}{0.3 \cdot 0.075} \left[1 - \left(\frac{5.9}{9.5} \right)^2 \right] \sqrt{\frac{5.75 \cdot 10^{-6}}{92 \cdot 10^{-6}}} = 0.34,
\]

\[
K_{012} = \frac{0.3 \cdot 0.075}{0.03 \left[1 - \left(\frac{5.9}{12} \right)^2 \right]} \sqrt{\frac{5.75 \cdot 10^{-6}}{92 \cdot 10^{-6}}} = 0.25.
\]

15. Оцениваем полосу пропускания входной цепи в начале и в конце диапазона

\[
\Pi_{9.5} = d_3 \cdot f_0 = 0.03 \cdot 9.5 \cdot 10^6 = 285 \text{ кГц}.
\]

\[
\Pi_{12.0} = 0.03 \cdot 12 \cdot 10^6 = 360 \text{ кГц}.
\]

Пример 2.8. Одноконтурная входная цепь приемника связана с антенной и усилителем радиочастоты. Коэффициенты включения в контур антенны \(m = 0.5 \). Активная составляющая проводимости антенны \(g_A = 0.02 \text{ см} \). Входная цепь настроена на резонансную частоту 5 МГц. Собственная добротность контура \(Q_K = 100 \); индуктивность контура \(L_K = 20 \text{ мкГн} \). Нагрузка входной цепи – транзистор с входной проводимостью \(g_H = 0.01 \text{ См} \). Определить неизвестные параметры входной цепи в режиме согласования с антенной.

Решение.

1. Характеристическое сопротивление контура

\[
\rho = \omega_0 L_K = 2\pi \cdot 5 \cdot 10^6 \cdot 20 \cdot 10^{-6} = 628 \text{Ом}.
\]

2. Собственная проводимость контура

\[
g_K = \frac{1}{\rho Q_K} = \frac{1}{628 \cdot 100} = 16 \text{ мкСм}.
\]

3. Эквивалентная резонансная проводимость контура с учетом влияния антенны и транзистора в режиме согласования

\[
G_{OE} = m^2 g_A + g_K + n^2 g_H = 2m^2 g_A = 2 \cdot 0.5^2 \cdot 0.1 = 0.01 \text{ См}.
\]

4. Эквивалентное затухание контура

\[
d_3 = \rho \cdot G_{OE} = 6.28 \cdot 0.01 = 6.28.
\]

5. Полоса пропускания входной цепи

\[
\Pi = f_0 \cdot d_3 = 5 \cdot 6.28 = 31.4 \text{ МГц}.
\]
6. Коэффициент включения транзистора в контур

\[n = \sqrt{\frac{m^2 g_A - g_K}{g_H}} = \sqrt{\frac{0.5^2 \cdot 0.02 - 16 \cdot 10^{-3}}{0.01}} = \sqrt{0.024984} > 1. \]

7. Резонансный коэффициент передачи входной цепи

\[K_0 = \frac{m \cdot n}{Z_{AO} \cdot G_{OE}} = \frac{m \cdot n}{Z_{AO} \cdot (g_K + m^2 g_A + n^2 g_H)} = \frac{m \cdot n}{2m^2 g_A \cdot Z_{AO}} = \frac{n}{2m g_A \cdot Z_{AO}} = \frac{1 - 0.01}{2 \cdot 0.5 \cdot 0.01} = 1. \]

Пример 2.9. Рассчитать одноконтурную входную цепь, настроенную на частоту \(f_0 = 400 \) МГц; полоса пропускания по уровню 3 дБ составляет \(\Pi = 20 \) МГц; проводимость фидера \(g_A = 13.3 \cdot 10^{-3} \) См; \(C_0 = 5 \) пФ. Входные параметры усилителя радиочастоты: \(g_{bx} = 5.56 \cdot 10^{-3} \) См, \(C_{bx} = 7 \) пФ. Входная цепь должна обеспечить режим согласования фидера с нагрузкой. Частота настройки усилителя промежуточной частоты \(f_{ПЧ} = 20 \) МГц. Контур выполнен на коротко-замкнутом отрезке несимметричной полосковой линии; волновое сопротивление \(Z_B = 100 \) Ом; собственное затухание \(d = 0.0017 \); резонансная проводимость ненагруженного контура \(g_K = 25 \cdot 10^{-6} \) См.

Решение.

1. Определяем характеристическое сопротивление контура

\[\rho = \frac{1}{\omega_0 C_0} = \frac{1}{2 \pi f_0 C_0} = \frac{1}{6.28 \cdot 400 \cdot 10^6 \cdot 5 \cdot 10^{-12}} = 80 \text{ Ом}. \]

2. Находим эквивалентное затухание контура

\[d_3 = \frac{\Pi}{f_0} = \frac{20}{400} = 0.05. \]

3. Рассчитываем эквивалентную проводимость контура входной цепи

\[g_3 = \frac{d_3}{\rho} = \frac{0.05}{80} = 625 \text{ мСм}. \]

4. Определяем коэффициент трансформации, обеспечивающий получение заданной полосы пропускания в режиме согласования

\[n = \sqrt{\frac{d_3 - 2 \rho g_K}{g_{bx}}} = \sqrt{\frac{0.05 - 2 \cdot 80 \cdot 25 \cdot 10^{-6}}{5.56 \cdot 10^{-3}}} = 0.228. \]

5. Находим коэффициент трансформации для согласования нагрузки с антенной

\[m = \sqrt{\frac{g_K + n^2 g_{bx}}{g_A}} = \sqrt{\frac{25 \cdot 10^{-6} + 0.228^2 \cdot 5.56 \cdot 10^{-3}}{13.3 \cdot 10^{-3}}} = 0.154. \]
6. Рассчитываем резонансный коэффициент передачи входной цепи при согласовании

\[K_0 = \frac{n}{2m} = \frac{0,228}{2 \cdot 0,154} = 0,75. \]

7. Определяем емкость подстроечного конденсатора

\[C_{\Pi} = C_0 - n^2 C_{VX} = 5 - 0,228^2 \cdot 7 = 4,62 \text{ пФ}. \]

Следует выбрать \(C_{\Pi} = 4...7 \text{ пФ}. \)

8. Находим избирательность по зеркальному каналу

\[f_{3K} = f_0 + 2 f_{1/4} = 400 + 2 \cdot 25 = 450 \text{ МГц}, \]

\[\sigma_{3K} = \frac{1}{d_{\frac{\pi}{2}}} \left(\frac{f_{3K}}{f_0} - \frac{f_0}{f_{3K}} \right) = \frac{1}{0,05} \left(\frac{450}{400} - \frac{400}{450} \right) = 4,7 \text{ (13,4 дБ)}. \]

Пример 2.10. Рассчитать входную цепь с магнитной антенной (рис. 2.20) в диапазоне частот 150…420 кГц при полосе пропускания \(II = 8 \text{ кГц}. \) Сопротивление потерь в антенне на частоте 150 кГц равно \(R_A = 5 \text{ Ом}. \) Собственная емкость антенной катушки \(C_A = 15 \text{ пФ}. \) На частоте 150 кГц \(g_H = 970 \text{ мкСм}, \)

\(C_H = 1600 \text{ пФ}; \) на частоте 420 кГц \(g_H = 1400 \text{ мкСм}, C_H = 1400 \text{ пФ}. \)

Рис. 2.20. Входная цепь с магнитной антенной

Решение.

1. Выбираем переменный конденсатор с минимальной емкостью \(C_{K\text{min}}=10 \text{ пФ} \) и максимальной емкостью \(C_{K\text{max}}=400 \text{ пФ}. \)

2. Принимаем на нижней частоте диапазона емкость контура, равную \(C_{\text{max}} = 450 \text{ пФ}. \) Тогда

\[L = \frac{1}{(2\pi f_{\text{min}})^2} C_{\text{max}} = \frac{1}{(6,28 \cdot 150 \cdot 10^3)^2 \cdot 400 \cdot 10^{-12}} = 2,5 \text{ мГн}. \]

3. На минимальной частоте диапазона (\(f_{\text{min}}=150 \text{ кГц} \)) определяем:

а) характеристическое сопротивление контура

\[\rho = \sqrt{\frac{L}{C_{\text{max}}}} = \sqrt{\frac{2,5 \cdot 10^{-3}}{400 \cdot 10^{-12}}} = \sqrt{\frac{25 \cdot 10^{-4}}{4 \cdot 10^{-8}}} = \frac{5}{2} \cdot 100 = 250 \text{ Ом}. \]

б) эквивалентную проводимость потерь в антенне

\[g_A \approx \frac{R_A}{\rho^2} = \frac{5}{(250)^2} = 1 \text{ мкСм}. \]
в) коэффициент связи с нагрузкой при обеспечении заданной полосы пропускания

\[
n = \sqrt{\frac{G_{OE} - g_A}{g_H}} = \sqrt{\frac{n \cdot C_{max}}{g_H}} = \sqrt{\frac{8 \cdot 10^3 \cdot 450 \cdot 10^{-12}}{970 \cdot 10^{-6}}} = 0,15.
\]

g) эквивалентную проводимость контура

\[
G_{OE} = g_A + n^2 g_H = 1 + (0,15)^2 \cdot 970\text{мкСм} = 22,6\text{мкСм}.
\]

4. Рассчитываем действительную емкость контура на минимальной частоте диапазона 150 кГц

\[
C_{max} = C_{K_{max}} + C_A + n^2 C_H = 400 + 15 + (0,15)^2 \cdot 1600 = 450 \text{ пФ}.
\]

5. Находим коэффициент перекрытия по диапазону

\[
K_D = \frac{f_{max}}{f_{min}} = \frac{420}{150} = 2,8.
\]

6. Минимальная емкость контура, соответствующая настройке входной цепи на частоту \(f_{max} = 420\) кГц

\[
C_{min} = \frac{C_{max}}{K_D^2} = \frac{450 \cdot 10^{-12}}{2,8^2} = 58 \text{ пФ}.
\]

7. Определяем емкость контура при полностью выведенном переменном конденсаторе

\[
C = C_A + C_{K_{min}} + n^2 C_H = 15 + 15 + (0,15)^2 \cdot 1600 = 54,5 \text{ пФ}.
\]

8. Параллельно переменному конденсатору необходимо подключить емкость

\[
C_H = C_{min} - C = 58 - 54,5 = 3,5 \text{ пФ}.
\]

Принимаем величину подстроечного конденсатора \(C_H = 2…10\) пФ.

9. Коэффициент передачи входной цепи на частоте 150 кГц

\[
K_{150} = \frac{n}{\omega L G_{OE}} = \frac{0,15}{2 \pi \cdot 150 \cdot 10^3 \cdot 2,5 \cdot 10^{-3} \cdot 22,6 \cdot 10^{-6}} = 2,8.
\]

10. Полагая, что \(R_A\) возрастает пропорционально частоте, находим на верхней частоте диапазона \(f_{max} = 420\) кГц

\[
g_A \approx \frac{R_A}{\rho^2} \approx \frac{R_A C}{L} \approx 0,3\text{мкСм} , \quad G_{OE} = g_A + n^2 g_H = 0,3 + (0,004)^2 \cdot 1400 = 32\text{мкСм},
\]

\[
n = \sqrt{\frac{\Pi \cdot C_{min}}{g_H}} = \sqrt{\frac{8 \cdot 10^3 \cdot 58 \cdot 10^{-12}}{1400 \cdot 10^{-6}}} = \sqrt{\frac{8 \cdot 58}{140 \cdot 10^4}} = \frac{1}{100 \cdot 10^4} = 0,004,
\]

\[
n^2 g_H \approx 31,5\text{мкСм}.
\]
11. Коэффициент передачи входной цепи на верхней частоте диапазона

\[K_{420} = \frac{n}{\omega_{\text{MAX}} \cdot L \cdot G_{OE}} = 0,71. \]

Следует отметить, что снижение коэффициента передачи входной цепи при повышении частоты в какой-то степени компенсируется возрастанием эффективной действующей высоты магнитной антенны.

Пример 2.11. Определить параметры ВЦ с ферритовой антенной и трансформаторной связью со входом первого транзистора. Исходные данные:
\[f_{\text{min}} = 150 \text{ кГц}; \quad f_{\text{max}} = 408 \text{ кГц}; \quad L = 2,2 \text{ мГн}; \quad d = 0,01; \quad \Pi_{TP} \geq 8 \text{ кГц}; \]
параметры сердечника: \(l = 16 \text{ см}; \quad D_{e} = 0,8 \text{ см}; \quad \mu_{0} = 400 \text{ Гн/м}; \)
действующая высота антенны в начале и в конце диапазона \(h_{D150} = 4 \text{ мм}; \quad h_{D408} = 10,9 \text{ мм}; \)
входная проводимость транзистора \(g_{\text{BX}} = 0,7 \text{ мСм}. \)

Решение.

1. Полоса пропускания контура на нижней частоте диапазона
\[\Pi_{K} = d \cdot f_{\text{min}} = 0,01 \cdot 150 = 1,5 \text{ кГц}. \]

2. Так как задана полоса пропускания, то индуктивность катушки связи при \(K_{CB} = 0,6 \)

\[L_{CB} = \frac{d - d}{K_{CB}^{2} \cdot g_{\text{BX}} \cdot \omega_{\text{min}}} = \frac{2\pi \left(\Pi_{TP} - \Pi_{K} \right)}{K_{CB}^{2} \cdot g_{\text{BX}} \cdot \omega_{\text{min}}^{2}} = \frac{6,28 \cdot (8 - 1,5) \cdot 10^{-3}}{0,6^{2} \cdot 0,7 \cdot 10^{-3} \cdot 6,28^{2} \cdot 150^{2} \cdot 10^{6}} = 180 \text{ мГн}. \]

3. Эквивалентное затухание контура в начале и в конце диапазона соответственно равно

\[d_{\mathcal{E}150} = d \left(1 + K_{CB}^{2} \frac{\omega}{d} L_{CB} \cdot g_{\text{BX}} \right) = \]

\[= 0,01 \left(1 + 0,6^{2} \cdot 0,18 \cdot 10^{-3} \cdot 0,7 \cdot 10^{-3} \cdot 6,28 \cdot 150 \cdot 10^{3} \right) = 0,053, \]

\[d_{\mathcal{E}408} = 0,13. \]

4. Полосы пропускания

\[\Pi_{150} = d_{\mathcal{E}150} \cdot f_{\text{min}} = 0,053 \cdot 150 = 7,95 \text{ кГц}, \]

\[\Pi_{408} = d_{\mathcal{E}408} \cdot f_{\text{max}} = 0,13 \cdot 408 = 53 \text{ кГц}. \]

5. Резонансные коэффициенты передачи ВЦ в начале и в конце диапазона

\[K_{OE150} = h_{D} \cdot \frac{K_{CB} \sqrt{L_{CB}}}{d_{\mathcal{E}}} \left(\frac{4 \cdot 10^{-3} \cdot 0,6}{0,053} \cdot \sqrt{\frac{0,18}{2,2}} \right) = 0,013, \]

\[K_{OE408} = 0,015. \]
Пример 2.12. По данным примера 2.11 найти параметры ВЦ для внутреннемкостной связи со входом первого транзистора.

Решение.
1. Из условия обеспечения требуемой полосы пропускания

\[
C_{CB} = \frac{1}{\omega_{min}^2 \cdot L} \left[\frac{g_{BX} \cdot \omega_{min}^2 \cdot L}{2\pi \left(\Pi_{TP} - \Pi_{K} \right)} - 1 \right] = \frac{1}{6,28^2 \cdot 150^2 \cdot 10^6 \cdot 2,2 \cdot 10^{-3}} \times \\
\times \left[\sqrt{0,7 \cdot 10^{-3} \cdot 6,28^2 \cdot 150^2 \cdot 10^6 \cdot 2,2 \cdot 10^{-3}} - 1 \right] = 2450 \text{ пФ.}
\]

2. Эквивалентное затухание контура для двух точек диапазона

\[
d_{\omega_{150}} = d \left[1 + \frac{g_{BX} \omega L}{\left(1 + \omega_{min}^2 L C_{CB} \right) d} \right] = \\
= 0,01 \left[1 + \frac{0,7 \cdot 10^{-3} \cdot 6,28 \cdot 150 \cdot 10^3 \cdot 2,2 \cdot 10^{-3}}{\left(1 + 6,28^2 \cdot 150^2 \cdot 10^6 \cdot 2,2 \cdot 10^{-3} \cdot 2,45 \cdot 10^{-9} \right)^2} \right] = 0,053,
\]

\[
d_{\omega_{408}} = 0,013.
\]

3. Полосы пропускания

\[
\Pi_{150} = d_{\omega_{150}} \cdot f_{0 \min} = 0,053 \cdot 150 = 7,95 \text{ кГц,}
\]

\[
\Pi_{408} = d_{\omega_{408}} \cdot f_{0 \max} = 0,013 \cdot 408 = 5,3 \text{ кГц.}
\]

4. Так как полоса пропускания в конце диапазона получилась требуемой, то примем емкость связи, рассчитанную в конце диапазона,

\[
C_{CB408} = \frac{1}{\left(6,28 \cdot 408 \cdot 10^3 \right)^2 \cdot 2,2 \cdot 10^{-3}} \left[\sqrt{0,7 \cdot 10^{-3} \cdot \left(6,28 \cdot 408 \cdot 10^3 \right)^2 \cdot 2,2 \cdot 10^{-3}} - 1 \right] = 1300 \text{ пФ.}
\]

5. Для такой емкости связи

\[
d_{\omega_{150}} = d \left[1 + \frac{g_{BX} \omega_{min} L}{\left(1 + \omega_{min}^2 L C_{CB} \right) d} \right] = 0,01 \times \\
\times \left[1 + \frac{0,7 \cdot 10^{-3} \cdot 6,28 \cdot 150 \cdot 10^3 \cdot 2,2 \cdot 10^{-3}}{\left(1 + 6,28^2 \cdot 150^2 \cdot 10^6 \cdot 2,2 \cdot 10^{-3} \cdot 1,3 \cdot 10^{-9} \right) \cdot 0,01} \right] = 0,122
\]

\[
d_{\omega_{408}} = 0,0195.
\]
6. Полосы пропускания: \(\Pi_{150} = 18 \text{ кГц} \), \(\Pi_{408} = 7,95 \text{ кГц} \).
7. Коэффициенты передачи для начала и конца диапазона

\[
K_{OE150} = \frac{h_D}{d_3 C_{CB} L \omega_{\min}^2} = \frac{4 \cdot 10^{-3}}{0,122 \cdot 13 \cdot 10^{-10} \cdot 2,2 \cdot 10^{-3} \cdot 6,28^2 \cdot 150^2 \cdot 10^6} = 0,016,
\]
\[
K_{OE408} = 0,03.
\]

Пример 2.13. По данным примера 2.11 рассчитать параметры входной цепи при трансформаторно–емкостной связи со входом первого транзистора.

Решение.
1. Индуктивность катушки связи для начала диапазона

\[
L_{CB150} = \frac{\pi (\Pi_{TP} - \Pi_K)}{K_{CB}^2 g_{BX} \omega_{\min}^2} = \frac{3,14 (8 - 1,5) \cdot 10^3}{0,6^2 \cdot 0,7 \cdot 10^{-3} \cdot 6,28^2 \cdot 150^2 \cdot 10^6} = 0,9 \cdot 10^{-4} \text{ Гн.}
\]

2. Емкость связи

\[
C_{CB150} = \frac{1}{\omega_{\min}^2 \cdot L} \left[\sqrt{g_{BX} \cdot \omega_{\min}^2 \cdot L} - 1 \right] = \frac{1}{(6,28 \cdot 150 \cdot 10^3)^2 \cdot 0,9 \cdot 10^{-4}} \times
\]
\[
\times \left[\frac{0,7 \cdot 10^{-3} \cdot 6,28^2 \cdot 150^2 \cdot 10^6 \cdot 0,9 \cdot 10^{-4}}{6,28(8 - 1,5) \cdot 10^3} - 1 \right] = 4,9 \cdot 10^{-9} \text{ Ф.}
\]

3. Эквивалентное затухание в начале диапазона

\[
d_{\omega_{150}} = d \left[1 + \left(\frac{K_{CB}^2 L_{CB}}{L} + \frac{1}{\omega_{\min}^2 L^2 C_{CB}^2} \right) g_{BX} \omega_{\min} L \right] = 0,01 \times
\]
\[
\times \left[1 + \left(\frac{0,6^2 \cdot 0,9 \cdot 10^{-4}}{2,2 \cdot 10^{-3}} + \frac{1}{6,28^4 \cdot 150^4 \cdot 10^{12} \cdot 2,2^2 \cdot 10^{-6} \cdot 4,9^2 \cdot 10^{-18}} \right) \frac{0,7 \cdot 10^{-3} \cdot 6,28 \cdot 150 \cdot 2,2 \cdot 10^{-3}}{0,01} \right],
\]
\[
d_{\omega_{408}} = 0,034.
\]

4. Полосы пропускания на крайних частотах диапазона

\[
\Pi_{150} = d_{\omega_{150}} \cdot f_{\min} = 0,054 \cdot 150 = 8 \text{ кГц},
\]
\[
\Pi_{408} = 14 \text{ кГц}.
\]

5. Резонансный коэффициент передачи

\[
K_{OE150} = h_D \cdot \frac{K_{CB} \sqrt{L_{CB} \left(1 + \frac{1}{\omega_{\min}^2 L_{CB} C_{CB}} \right)}}{d_3 \sqrt{L} \left(1 + \frac{1}{\omega_{\min}^2 L_{CB} C_{CB}} \right)} = \frac{4 \cdot 10^{-3} \cdot 0,6 \cdot \sqrt{0,9 \cdot 10^{-4} \cdot 2,2 \cdot 10^{-3}}}{0,054 \cdot \sqrt{2,2 \cdot 10^{-3}}} \times
\]
\[
\times \left[1 + \frac{1}{6,28^2 \cdot 150^2 \cdot 10^6 \cdot 0,9 \cdot 10^{-4} \cdot 4,9 \cdot 10^{-9}} \right] = 0,033.
\]
\[
K_{OE408} = 0,052.
\]
Пример 2.14. Рассчитать одноконтурную входную цепь с трансформаторной связью с настроенной антенной (рис. 2.21). Исходные данные: волновое сопротивление фидера \(Z_B = 75 \text{ Ом} \), коэффициент передачи фидера \(K_ф = 0,88 \). Контур настроен на резонансную частоту \(f_0 = 10 \text{ МГц} \). Эквивалентное затухание контура \(d_2 = 0,02 \). Входные параметры первого усилительного каскада РПУ: \(R_{BX} = 200 \text{ Ом} \), \(C_{BX} = 100 \text{ пФ} \).

Рис. 2.21. Одноконтурная входная цепь с трансформаторной связью с настроенной антенной

Решение.
1. Выбираем полную емкость контура в заданном диапазоне частот \(C_H = 55 \text{ пФ} \).
2. Задаемся собственным затуханием контура \(d = 0,006 \).
3. Вычисляем коэффициенты включения фидера и входа первого каскада усилителя радиочастоты соответственно
 \[
 m_A = \sqrt{0,5d_2 \omega_0 CZ_B} = \sqrt{0,5 \cdot 0,02 \cdot 6,28 \cdot 10^7 \cdot 55 \cdot 10^{-12} \cdot 75} = 0,051,
 \]
 \[
 m_{BX} = \sqrt{0,5(d_2 - 2d) \omega_0 CR_{BX}} = \sqrt{0,5(0,02 - 2 \cdot 0,006) \cdot 6,28 \cdot 10^7 \cdot 55 \cdot 10^{-12} \cdot 75} = 0,0525.
 \]
4. Рассчитаем емкость контура
 \[
 C_K = C - C_L - m_{BX}^2 (C_M + C_{BX}) = 55 - 3 - 0,0525^2 (3 + 100) \approx 52 \text{ пФ}.
 \]
5. Находим индуктивность контура
 \[
 L = \frac{2,53 \cdot 10^4}{C \cdot f_0^2} = \frac{2,53 \cdot 10^4}{55 \cdot 10^{-12} \cdot 10^{14}} = 4,6 \text{ мкГн}.
 \]
6. Определим индуктивность катушки связи с антенной
 \[
 L_{CVA} = \frac{Z_B}{\omega_0} = \frac{75}{6,28 \cdot 10^7} = 1,19 \text{ мкГн}.
 \]
7. Вычисляем минимальный коэффициент связи, при котором обеспечивается согласование:
 \[
 K_{CВ} = \sqrt{2 \left(d + m_{BX}^2 g_{BX} \omega_0 L \right)} = \sqrt{2 \left(0,006 + 0,0525^2 \cdot 0,005 \cdot 6,28 \cdot 10^7 \cdot 4,6 \cdot 10^{-6} \right)} = 0,141.
 \]
8. Рассчитываем коэффициент передачи входной цепи

\[K_0 = 0.5\cdot K_\Phi \sqrt{\frac{1 - \frac{2d}{d_\lambda}}{R_{bx}}} = 0.5\cdot 0.88 \sqrt{\frac{1 - \frac{2\cdot 0.006}{0.02}}{75}} = 0.91. \]

Пример 2.15. Рассчитать одноконтурную входную цепь с последовательной индуктивностью (рис. 2.22) по следующим исходным данным: волновое сопротивление несимметричного фидера \(Z_B = 75 \) Ом; коэффициент передачи фидера \(K_\Phi = 0.88 \). Контур настроен на частоту \(f_0 = 100 \) МГц; требуемое эквивалентное затухание контура \(d_{3T} = 0.05 \). Сопротивление нагрузки \(R_H = 200 \) Ом, емкость нагрузки \(C_H = 25 \) пФ. Промежуточная частота 10,7 МГц.

Рис. 2.22. Одноконтурная входная цепь с последовательной индуктивностью

Решение.
1. Коэффициент трансформации, обеспечивающий согласование фидера со входом следующего каскада,

\[m = \sqrt{\frac{Z_B}{R_{bx}}} = \sqrt{\frac{75}{200}} = 0.612. \]

2. Выбираем \(C_2 \) учитывая, что с ростом \(C_2 \) уменьшается \(L \) и может стать физически нереализуемой, а с уменьшением \(C_2 \) увеличивается влияние разброса \(C_H \) на настройку контура входной цепи. Принимаем \(C_2 = C_H = 25 \) пФ.

3. Вычисляем при емкости монтажа \(C_M = 5 \) пФ

\[C_1 = \frac{C_2 + C_{bx} + C_M}{m} = \frac{25 + 25 + 25}{0.612} = 95 \text{ пФ}. \]

4. Рассчитываем полную емкость, принимая межвитковую емкость катушки индуктивности \(C_L = 3 \) пФ,

\[C = C_L + \frac{C_1 \left(C_2 + C_H + C_M \right)}{C_1 + C_2 + C_H + C_M} = 3 + 95 \frac{(25 + 25 + 5)}{(95 + 22 + 25 + 5)} = 35 \text{ пФ}. \]

5. Находим индуктивность контура

\[L = \frac{2.53 \cdot 10^4}{C \cdot f_0^2} = \frac{2.53 \cdot 10^4}{35 \cdot 100^2} = 0.07 \text{ мкГн}. \]
6. Определяем резонансный коэффициент передачи в режиме согласования

\[K_{oc} = 0.5 \cdot K_f \sqrt{\frac{R_h}{Z_b}} = 0.5 \cdot 0.88 \sqrt{\frac{200}{75}} = 0.719. \]

7. Вычисляем эквивалентное затухание контура

\[
d_{\phi} = \left\{ \frac{1}{Z_B (1 + m)} \right\} + \left\{ \frac{1}{R_h (1 + m)} \right\} \times \frac{1}{2 \pi f_0 C_2} = \left[\frac{1}{75(1 + 0.612)} + \frac{1}{200(1 + 0.612)} \right] \times \frac{1}{6.28 \cdot 100 \cdot 10^6 \cdot 35 \cdot 10^{-12}} = 0.76. \]

Так как \(d_{\phi} > d_{\phi r} \), то необходимо еще один контур для выполнения требований к избирательности.

Задачи

2.1. Одноконтурная входная цепь (ВЦ) настроена на частоту 40 МГц и через трансформаторную связь согласована с антенной, у которой \(R_A = 75 \) Ом. Индуктивность катушки связи \(L_{CB} = 2 \) мкГн. Собственное затухание контура \(d = 0.01 \). Найти коэффициент связи \(K_{CB} \). Что нужно сделать с ВЦ, чтобы в данном режиме согласования получить минимальное значение коэффициента связи \(K_{CB\min} \)? Чему равен \(K_{CB\min} \)?

2.2. Определить коэффициенты включения \(m \) и \(n \) в режиме согласования настроенной антенны с одноконтурной входной цепью при требуемой полосе пропускания \(P_{TR} = 37.5 \) МГц, если: \(f_0 = 150 \) МГц, \(R_A = 100 \) Ом, \(g_{BX} = 5 \) мСм, \(C_E = 20 \) пФ, \(Q = 20 \).

2.3. Найти коэффициент передачи и полосу пропускания ВЦ (рис. 2.23) в режиме согласования при максимальном коэффициенте передачи и ограниченной полосе пропускания, по следующим исходным данным: \(n = 0.1; R_{\phi} = 100 \) Ом, \(g = 1 \) мСм, \(g_{BX} = 80 \) мСм, \(f_0 = 132 \) МГц, \(C_E = 30 \) пФ.

![Рис. 2.23. Входная цепь в режиме согласования](image-url)
2.4 Одноконтурная входная цепь настроена на резонансную частоту \(f_0 = 100 \text{ МГц} \) при эквивалентной емкости контура входной цепи \(C_\ell = 20 \text{ пФ} \) и собственной проводимости контура \(g = 0,13 \text{ мСм} \). Сопротивление антенны \(R_A = 150 \text{ Ом} \), проводимость нагрузки \(g_{BX} = 1 \text{ мСм} \), коэффициенты включения антенны и нагрузки в контур соответственно равны \(m = 0,3; n = 1 \). Для повышения избирательности ВЦ на частоте помехи \(f_{\text{ит}} = 157 \text{ МГц} \) на 10 дБ рассчитать новые значения коэффициентов включения, обеспечивающих наименьший проигрыш в коэффициенте передачи. Определить возможный проигрыш.

2.5 Определить изменение коэффициента передачи согласованной одноконтурной ВЦ при переходе от режима максимальной передачи к режиму заданного расширения полосы пропускания. Исходные данные: \(g_\ell = 80 \text{ мСм}; g = 1,5 \text{ мСм}; g_{BX} = 8 \text{ мСм}; \gamma = D = 2,5 \).

2.6 Одноконтурная ВЦ имеет автотрансформаторную связь как с антенной, так и со входом следующего каскада (\(g = 1 \text{ мСм}, g_{BX} = 5 \text{ мСм} \)). Антenna согласована с ВЦ, а коэффициенты включения \(m \) и \(n \) выбираются из условия обеспечения режима максимальной передачи без ограничения полосы пропускания. Найти значения \(m \) и \(n \), а также коэффициент передачи ВЦ для двух случаев: а) \(R_A = 75 \text{ Ом} \); б) \(R_A = 300 \text{ Ом} \).

2.7 Определить резонансный коэффициент передачи входной цепи при внешней емкостной связи с антенной по следующим данным: \(C_K = 200 \text{ пФ}, f_0 = 900 \text{ кГц}, r_K = 15 \text{ Ом}, C_{CB} = 20 \text{ пФ}, C_A = 150 \text{ пФ}, Q_\ell = 0,9; Q_A \).

(Ответ: \(K_0 = 4,3 \)).

2.8 Как изменится резонансный коэффициент передачи ВЦ при увеличении \(C_K \) в 2 раза по сравнению с \(C_K \) в задаче 2.7 при прочих равных условиях? (Ответ: \(K_0 = 17,7 \)).

2.9 Определить относительное изменение емкости контура при изменении емкости антенны \(C_A \) от 150 пФ до 300 пФ по данным задачи 2.7.

(Ответ: \(\Delta C_A/C_\ell = 0,51 \)).

2.10 Решить задачу 2.9 при \(C_{CB} = 60 \text{ пФ} \).

(Ответ: \(\Delta C_A/C_\ell = 0,028 \))

2.11 Рассчитать резонансный коэффициент передачи ВЦ при индуктивной связи с антенной для двух точек диапазона по следующим данным: \(L = 300 \text{ мкГн}, Q = 67, L_{CB} = 2100 \text{ мкГн}, f_{\text{max}} = 1,3 \text{ МГц}, f_{\text{min}} = 400 \text{ кГц}, K_{CB} = 0,23 \). Емкость антенны \(C_A \) изменяется в пределах от 150 до 300 пФ.

(Ответ: при \(f_{\text{min}} = 400 \text{ кГц}, K_0 = 6,8 \); при \(f_{\text{max}} = 1,3 \text{ МГц}, K_0 = 5,2 \); \(f_{A_{\text{max}}} = 0,7 f_{\text{min}} \)).
2.12 Рассчитать индуктивную связь ВЦ с контуром по следующим данным: \(f_{min} = 150 \) кГц, \(f_{max} = 400 \) кГц, индуктивность контура \(L = 2080 \) мкГн, добротность контура \(Q = 50 \), емкость антенны \(C_A = 150...300 \) пФ.

(Ответ: \(K_0 = 4.7 \) (\(f = 150 \) кГц, \(f_{A max} = 0.8 f_{min} \); \(K_0 = 3.3 \) (\(f = 400 \) кГц)).

2.13 Определить ослабление, обеспечиваемое одиночным колебательным контуром с резонансной частотой 150 кГц и эквивалентным затуханием 0,06 при отстройке от резонансной частоты на 10 и 30 кГц.

(Ответ: 2.45 и 6.75).

2.14 При какой расстройке резонансная система, рассмотренная в задаче 2.13, обеспечивает ослабление в 10 раз?

(Ответ: 45 кГц).

2.15 К входной цепи (рис. 2.24) могут быть подключены штыревые антенны с различными значениями \(C_A \) (\(C_{A min} = 10 \) пФ, \(C_{A max} = 20 \) пФ). При перестройке в диапазоне частот 525...1530 кГц допустимое изменение коэффициента передачи входной цепи не более 6 дБ. Найти индуктивность катушки связи \(L_{CB} \) (\(L_K = 0.27 \) мГн).

2.16 Рассчитать и построить зависимость от частоты коэффициента передачи и полосы пропускания для входных цепей, показанных на рис. 2.25 а, б. Диапазон перестройки \(f_{min} = 525 \) кГц, \(f_{max} = 910 \) кГц. Принято, что при перестройке конденсатором (рис. 2.25 а) добротность контура, равная \(Q = 60 \), остается неизменной, а при настройке индуктивностью добротность меняется

\[Q = 20 \cdot 10^6 \cdot \omega_0^{-1}. \]

Рис. 2.24. Входная цепь с трансформаторной связью

Рис. 2.25. Входная цепь с внешней емкостной связью

2.17 Рассчитать ослабление, которое дает одиночный колебательный контур, имеющий резонансную частоту 9 МГц и эквивалентную добротность \(Q_3 = 50 \), при отстройках 10 кГц и 300 кГц.

2.18 Определить эквивалентное затухание колебательного контура, при котором он обеспечивает ослабление 20 дБ для расстройки 30 кГц от резонансной частоты 300 кГц.
2.19 Во сколько раз для расстройки, равной полосе пропускания, ослабление в системе двух связанных контуров при критической связи больше ослабления, создаваемого одиночным колебательным контуrom.

(Ответ: 1,9 раз).

2.20 Как изменится ослабление при расстройке на 10 кГц двухконтурной избирательной системы при критической связи по сравнению с одиночным колебательным контуrom; резонансная частота 500 кГц, эквивалентное затухание контуров $Q_3 = 60$.

2.21 Для одноконтурной входной цепи с внешней емкостной связью (рис. 2.26) рассчитать коэффициент передачи и полосу пропускания на крайних частотах диапазона по следующим данным: $C_1 = 150$ пФ, $C_5 = 430$ пФ, $C_3 = 15$ пФ, $C_2 = 8/30$ пФ, $C_4 = 2\cdot(506/22)$ пФ, $L = 162$ мГн, $R_U = 2,2$ МОм. Параметры антенны $C_A = 150$ пФ, $L_A = 20$ мкГн, $R_A = 20$ Ом. На какую антенну (укороченную или удлиненную) работает приемник в данном диапазоне?

![Рис. 2.26. Одноконтурная входная цепь с внешней емкостной связью](image)

2.22 Рассчитать коэффициент передачи, полосу пропускания, индуктивность связи, индуктивность контура, емкость подстроенного конденсатора для одноконтурной входной цепи с трансформаторной связью (рис. 2.27) по следующим данным: $f_{min} = 900$ кГц, $f_{max} = 2$ МГц, $C_{K\ max} = 460$ пФ, $C_{K\ min} = 23$ пФ. Параметры антенны: $L_A = 20$ мкГн, $C_{A\ max} = 300$ пФ, $C_{A\ min} = 150$ пФ, $C_{CX} = 40$ пФ.

2.23 Определить эквивалентную добротность контура входной цепи, у которой индуктивность $L_K = 2,08$ мГн, а эквивалентная емкость изменяется от 480 пФ до 113 пФ, если при отстройке на 20 кГц избирательность должна быть не менее 20 дБ.

![Рис. 2.27. Одноконтурная входная цепь с трансформаторной связью](image)
2.24 Рассчитать геометрические размеры четвертьволнового трансформатора полного сопротивления на МПЛ \((f_0 = 2 \text{ ГГц}, \varepsilon = 10, h = 1 \text{ мм})\), согласующего \(R_f = 50 \text{ Ом} \text{ с } R_H = 10 \text{ Ом}.\)

2.25 Рассчитать геометрические размеры двухступенчатого четвертьволнового трансформатора полного сопротивления на МПЛ \((f_0 = 3 \text{ ГГц}, \varepsilon = 10, h = 1 \text{ мм})\), согласующего \(R_f = 150 \text{ Ом} \text{ с } R_H = 500 \text{ Ом}.\)

2.26 Подводящая линия с волновым сопротивлением \(Z_B = 50 \text{ Ом} \text{ с помощью отрезка МПЛ (длина } l, \text{ волновое сопротивление } Z_{B_0} \text{ согласует с нагрузками: а) } Z_{H_1} = 5 + j 23 \text{ Ом; б) } Z_{H_2} = 5 + j 8 \text{ Ом. В каком случае физически реализуемо согласование? Рассчитать величины } K_l \text{ и } W.\)

2.27 При каком сопротивлении нагрузки \(Z_{H_2}\) из задачи 2.26 целесообразно применить двухступенчатый трансформатор (рис. 2.28 б), рассчитать его параметры.

2.28 Найти геометрические размеры Г-образных согласующих цепей (СЦ) на одношлейфовых трансформаторах (рис. 2.28 а, б) при \(R_H = 50 \text{ Ом, } b_1 = b_2, \varepsilon = 5, h = 1 \text{ мм, } f_0 = 1 \text{ ГГц. Какой из двух вариантов СЦ (рис. 2.28 а, б) целесообразно применить при сопротивлении } Z_f = 10 + j 25 \text{ Ом и } Z_f = 10 - j 25 \text{ Ом. Шлейфы 1 имеют реактивную входную проводимость, определяющуюся по формуле (2.66) при коротком замыкании или холостом ходу на выходе, которая компенсирует мнимую составляющую проводимости } Y_f. \text{ Шлейфы 2 представляют собой четвертьволновые трансформаторы, согласующие действительную составляющую } Y_f \text{ с } R_H.\)

2.29 Рассчитать П-образную схему СЦ (рис. 2.29), предназначенную для узкополосного согласования \(Z_f = 4 + j 20 \text{ Ом} \text{ с } Z_{H_1} = 50 - j 5 \text{ Ом на частоте } f_0 = 100 \text{ МГц (} Y_3 \text{ – катушка индуктивности). Найти сквозной резонансный коэффициент передачи напряжения СЦ.}\)
2.30 Вывести формулы для расчета Г-образной СЦ, получаемой из схемы предыдущей задачи при \(Y_2 = 0 \) для узкаполосного согласования \(Z_L \) с \(Z_H \).

Контрольные вопросы

1. Дать определение действующей высоты, емкости и индуктивности антены.
2. От каких параметров и каким образом зависит действующая высота приемных антенн различных конструкций?
3. Нарисовать эквивалентную схему приемной антенны в ДВ, СВ, КВ и УКВ диапазонах?
4. Какая связь между э.д.с. сигнала в антенне с напряженностью поля в месте расположения антенны?
5. Основные функции ВЦ.
6. Нарисовать схемы одноконтурных ВЦ.
7. Нарисовать обобщенную эквивалентную схему одноконтурных входных цепей и объяснить принцип ее построения.
8. Условия получения максимального коэффициента передачи одноконтурной входной цепи.
9. Физическая сущность режима согласования.
10. В чем отличие эквивалентного затухания от собственного затухания контура входной цепи?
11. Условия получения максимального коэффициента передачи ВЦ при заданной полосе пропускания.
12. Условия выбора коэффициента связи контура с антенной.
13. Пути повышения избирательности одноконтурной входной цепи.
14. Особенности ВЦ с магнитными антеннами.
15. Сравнить ВЦ с магнитными антеннами при трансформаторной и трансформаторно – емкостной связях со входом следующего каскада.
16. Почему при использовании биполярного транзистора в первом каскаде усилителя радиочастоты связь антенного контура с транзистором выбирается неполной?
17. Почему коэффициент передачи входной цепи меньше добротности контура?
18. Как влияет емкость связи на коэффициент передачи ВЦ?
19. Почему емкость связи выбирается малой величины?
20. От чего зависит способ связи антенны с контуром?
21. На какой показатель РПУ оказывает влияние изменение коэффициента передачи ВЦ в диапазоне принимаемых частот?
22. Почему при изучении ВЦ интересуются параметрами антенн?
23. От чего зависит избирательность ВЦ?
24. Чем определяется полоса пропускания ВЦ?
25. Как уменьшить влияние антенны на входной контур?
26. Объяснить понятие «укороченная» и «удлиненная» антенная цепь.
3 УСИЛИТЕЛИ РАДИОЧАСТОТЫ

3.1 Усилители сигналов умеренно высоких частот

В УРЧ умеренно высоких частот (длинные, средние, короткие и метровые волны) используются избирательные системы (одноконтурные или двухконтурные) с сосредоточенными параметрами. Транзисторные УРЧ чаще всего выполняются по следующим схемам: с общим эмиттером (ОЭ), общим истоком (ОИ), общей базой (ОБ) и общим затвором (ОЗ), которые представлены на рис. 3.1 а, б, в, г соответственно.

Рис. 3.1. Типы усилительных каскадов УРЧ
При проектировании каскодных УРЧ широкое применение получили следующие соединения транзисторов: ОЭ-ОБ (рис. 3.2 а), ОИ-ОЗ (рис. 3.2 б), ОИ-ОБ (рис. 3.2 в), ОИ-ОЭ (рис. 3.2 г).

Рис. 3.2. Каскодные УРЧ
Обобщенная эквивалентная схема каскада одноконтурного УРЧ приведена на рис. 3.3, где связь контура с электронным прибором и входом следующего каскада для общности принята автотрансформаторной.

![Эквивалентная схема одноконтурного УРЧ](image)

Рис. 3.3. Эквивалентная схема одноконтурного УРЧ

Так как реактивность выходной и входной проводимостей транзистора имеет емкостной характер, то на эквивалентной схеме эти проводимости представлены параллельным соединением активных проводимостей \(g_{ВЫХ1} \) и \(g_{ВХ2}\) и соответствующих им ёмкостей \(C_{ВЫХ1}, C_{ВХ2}\). Индексом «1» обозначены элементы транзистора рассчитываемого каскада, а индексом «2» – следующего каскада, вход которого подключается к колебательному контуру. \(C_{M1}\) и \(C_{M2}\) – монтажные емкости коллекторной цепи транзистора и входа следующего каскада соответственно; \(g_{M1}\) – проводимость элементов схемы питания коллекторной цепи, а \(g_{M2}\) – проводимость цепи питания базы транзистора следующего каскада. Конденсатор \(C_{кат}\) учитывает соответственно емкость контурной катушки, а \(C_{п}\) – подстрочный конденсатор. Обозначая \(C_{ВЫХ1}+C_{M1}=C_1, C_{M2}+C_{ВХ2}=C_2\),

\[
C_{ВЫХ1}+g_{M1} = g_1, g_{M2}+g_{ВХ2} = g_2. \tag{3.1}
\]

Получим упрощенную эквивалентную схему резонансного усилителя (рис. 3.4), для которого коэффициенты включения

\[
m_2 = \frac{L_1}{L}, \quad n_2 = \frac{L_{ВЫХ}}{L} = \frac{L_2}{L}. \tag{3.2}
\]

![Упрощенная эквивалентная схема резонансного усилителя](image)

Рис. 3.4. Упрощенная эквивалентная схема резонансного усилителя

Резонансный коэффициент усиления каскада

\[
k_0 = \frac{m_2 n_2 \cdot y_{21}}{g_3}, \tag{3.3}
\]

где

\[
g_3 = g + m_2^2 g_1 + n_2^2 g_2. \tag{3.4}
\]

представляет резонансную эквивалентную проводимость колебательного контура с учётом его шунтирования всеми проводимостями данного каскада и входной проводимостью следующего каскада.
Эквивалентное затухание колебательного контура, определяющее избирательные свойства резонансного усилителя,

\[d_3 = g_3 \cdot \rho = g \rho \left(1 + \frac{m_2^2 g_1}{g} + \frac{n_2^2 g^2}{g} \right) = d \left(1 + \frac{m_2^2 g_1}{g} + \frac{n_2^2 g^2}{g} \right), \]
(3.5)

где \(g \) – активная резонансная проводимость колебательного контура; \(\rho \) – характеристическое сопротивление контура; \(d \) – собственное затухание контура.

Так как для усиления радиочастоты на транзисторах справедливо \(g_2 \gg g_1 \), то наибольший коэффициент усиления при согласовании достигается выбором коэффициентов включения из равенств

\[m_2 = 1, \quad n_2 = \sqrt{\frac{g + g_1}{g_2}}. \]
(3.6)

При согласовании максимальный коэффициент усиления

\[K_{OC\text{max}} = \frac{0.5 |y_{21}|}{\sqrt{(g_1 + g)g_2}}, \]
(3.7)

эквивалентное затухание

\[d_{3C} = 2d \left(1 + \frac{g_1}{g}\right) \]
(3.8)

и полоса пропускания резонансного усилителя

\[\Pi_C = d_{3C} \cdot f_0 = 2d f_0 \left(1 + \frac{g_1}{g}\right) = 2\Pi_K \left(1 + \frac{g_1}{g}\right). \]
(3.9)

Если требуется меньшая полоса пропускания (\(\Pi < \Pi_C \)), то наибольшее усиление достигается при одинаковом шунтировании колебательного контура внешними проводимостями

\[m_2^2 g_1 = n_2^2 g_2. \]
(3.10)

Подставляя (3.10) в выражения (3.5), получим соответствующие коэффициенты включения

\[m_{2k_0} = \sqrt{\frac{g}{2g_1} \left(\frac{d_2}{d} - 1\right)}, \quad n_{2k_0} = \sqrt{\frac{g}{2g_2} \left(\frac{d_2}{d} - 1\right)}, \]
(3.11)

при которых

\[K_{OC\text{max}} = \frac{0.5 |y_{21}|}{\sqrt{g_1 g_2}} \left(1 - \frac{d}{d_3}\right). \]
(3.12)

В том случае, когда требуется получить коэффициент усиления \(K_0 < K_{OC\text{max}} \), выбором коэффициентов включения по условию (3.11) можно обеспечить минимальную полосу пропускания.
\[\Pi_{\text{min}} = \frac{\Pi_K}{1 - \frac{2K_0 \sqrt{g_1 g_2}}{|y_{21}|}}. \quad (3.13) \]

Подстановка значения \(d_{\text{min}} = \Pi_{\text{min}} / f_0 \) в выражение (3.11) позволяет найти необходимые коэффициенты включения. Рассчитанный резонансный коэффициент усиления не должен быть больше устойчивого резонансного коэффициента усиления, рассчитанного на верхней частоте диапазона

\[K_0 = K_{0\text{УСТ}} = 0,45 \sqrt{\frac{|y_{21}|}{|y_{12}|}} = 0,45 \sqrt{\frac{|y_{21}|}{2\pi f_{\text{max}} C_{12}}}. \quad (3.14) \]

где \(C_{12} \) – емкостная составляющая проводимости внутренней обратной связи транзистора.

В режиме согласования добиваться выполнения условия (3.14) выгоднее за счёт уменьшения коэффициента включения \(m \), что снижает эквивалентное затухание колебательного контура и улучшает его избирательные свойства. При этом

\[m_{2c} = \sqrt{\frac{0,25 |y_{21}|^2 K_{0\text{УСТ}}^2 \cdot \cdot g \cdot g}{K_{0\text{УСТ}} \cdot g_1 \cdot g_2}}, \quad (3.15) \]
\[n_{2c} = \sqrt{\frac{g + m_{2c}^2 g}{g_2}}, \quad (3.16) \]
\[d_{3c} = 2d \left(1 + \frac{m_{2c}^2 g_1}{g} \right), \quad (3.17) \]

При требуемой полосе пропускания (\(\Pi_{TP} \)) необходимые коэффициенты включения должны удовлетворять уравнениям (3.3) и (3.5), совместное решение которых даёт искомые коэффициенты включения

\[m_2 = \sqrt{\frac{N}{g_1} \pm \sqrt{\frac{N^2}{g^2} \cdot \frac{g_2}{g_1} M^2}}, \quad n_2 = \sqrt{\frac{N}{g_2} \pm \sqrt{\frac{N^2}{g_2^2} \cdot \frac{g_1}{g_2} M^2}}, \quad (3.18) \]
\[N = 0,5 g \left(\frac{\Pi_{TP}}{\Pi_K} - 1 \right), \quad M = \frac{\Pi_{TP} \cdot gK_{0\text{УСТ}}}{\Pi_K |y_{21}|}, \quad (3.19) \]

где \(\Pi_K \) – полоса пропускания, соответствующая конструктивной добротности колебательного контура (\(Q_K \)).

Первая пара коэффициентов включения (3.18) соответствует знаку «плюс» в формуле для \(m_2 \) и знаку «минус» для \(n_2 \). Вторая пара образуется при обратных знаках. Можно брать любую из них, если полученные коэффициенты меньше единицы (физически реализуемые в автотрансформаторной и ёмкостной схемах включения).
Входные емкости транзисторов примерно на порядок больше выходных, поэтому $C_2 > C_1$. В этом случае для получения меньшей эквивалентной емкости колебательного контура целесообразно выбирать $m_2 = 1$ и $n_2 < 1$. Для этого в выражении для m_2 (3.18) следует взять знак «плюс» перед внутренним радикалом, принять $m_2 = 1$ и найти соответствующее ему значение проводимости

$$g'_1 = 2N - g_2^{'} M^2.$$ \hspace{1cm} (3.20)

Для получения такой проводимости необходимо параллельно выходу транзистора подключить добавочную шунтирующую проводимость

$$g_{sh1} = \frac{1}{R_{sh1}} = g'_1 - g_1 = 2N - g_2^{'} M^2 - g_1.$$ \hspace{1cm} (3.21)

После этого из второй формулы (3.18), приняв в ней перед внутренним радикалом знак «минус» и подставив вместо g_1 найденную проводимость g'_1, следует найти необходимое значение n_2.

Коэффициент усиления номинальной мощности рассчитывается следующим образом:

$$K_{P nom} = K_{0 вт}^2 \left(\frac{y_{21}}{g_1 g_{22}}\right)^2.$$ \hspace{1cm} (3.22)

Коэффициент усиления проходной мощности УРЧ

$$K_p = \left(\frac{m_2 n_2 y_{21}}{g_3 g_1^{'} g_1^{''}}\right)^2 g_2^{''},$$ \hspace{1cm} (3.23)

Коэффициент шума УРЧ на биполярном транзисторе по схеме с общим эмиттером при настройке контура в резонанс на частоту сигнала с учётом воздействия на него источника сигнала и транзистора равен

$$\begin{align*}
\left(\delta_D\right)^2 &= \frac{\left[\delta_\phi^2 (g'_1 + g'_1)^2 + \delta_\phi^2 b_1^2 (1 + g_{sh1}^2)^2 + \frac{R_{sh1} (g'_1 + g'_1 + g_{11})}{g_1^{''}}\right]}{g_1^{''}},
\end{align*}$$ \hspace{1cm} (3.24)

где

$$g'_1 = \frac{m_2}{n_2} g_1, \quad g' = \frac{g}{n_2}, \quad R_{sh} = \frac{g}{2KT}, \quad \frac{I_2 g_0}{\left|y_{21}\right|} = \frac{gI_K}{2KT\left|y_{21}\right|} = \frac{20\alpha_0}{\left|y_{21}\right|},$$ \hspace{1cm} (3.25)

$$g_{sh} = \frac{g}{2KT} I_3 \left(1 - \alpha_0\right) + \frac{I_{K0} + I_{30}}{I_3} = 20I_K \left(\frac{1}{\alpha_0} - 1\right) = 20I_3 (1 - \alpha_0).$$ \hspace{1cm} (3.26)

В режиме согласования с источником сигнала

$$\begin{align*}
\left(\delta_D\right)^2 &= 1 + \frac{g'_1}{g' + g_{11}^{''}} + \frac{\delta_\phi^2 (2g'_1 + g_{11})^2}{g' + g_{11}^{''}} + \frac{\left[1 + \delta_\phi^2 (2g'_1 + g_{11})\right]^2}{g' + g_{11}^{''}} + \\
&+ \frac{\delta_\phi^2 g_{11}^2}{g' + g_{11}^{''}} + 4R_{sh} (g' + g_{11}^{''}).
\end{align*}$$ \hspace{1cm} (3.27)
В режиме оптимального рассогласования
\[
III_{ШШ} = 1 + 2z_\delta (g + g_{ШШ}) + 2R_{ШШ} (g + g_{ШШ}) + 2(z_\delta + R_{ШШ}) g_{ШШ} \text{ opt},
\] (3.28)
\[
g_{ШШ \text{ opt}} = \sqrt{g (1 + z_\delta g) + g_{ШШ} (1 + z_\delta g)^2 + z_\delta b_{11}^2 + R_{ШШ} (g + g_{ШШ})^2}.\] (3.29)

Так как источником сигнала для каскада УРЧ служит входная цепь, то при расчетах целесообразно использовать обобщенную эквивалентную схему УРЧ с учетом входного контура (рис. 3.5).

Рис. 3.5. Обобщенная эквивалентная схема УРЧ с учетом входного контура

Примеры решения задач

Пример 3.1. Рассчитать элементы питания биполярного транзистора, включенного по схеме с общим эмиттером (ОЭ), резонансного усилителя по следующим данным: \(E_П = 9 \text{ В}, U_{КЭ} = 5 \text{ В}, I_К = 5 \text{ мА}, I_{кБО} = 2 \text{ мкА}, f_0 = 60 \text{ МГц}, g_{11} = 6 \cdot 10^{-3} \text{ См}, \) диапазон рабочих температур (-40…+60)°C.

Решение.

1. Изменение обратного тока коллектора
\[
\Delta I_{кБО} = I_{кБО} \cdot 2^{0.1(t_{max}-t_0)} = 2 \cdot 2^{0.1(333-293)} = 32 \text{ мкА}.
\]

2. Тепловое смещение напряжения на базе транзистора при \(\gamma = 1.8 \text{ мВ/К} \)
\[
\Delta U_{зб} = \gamma (T_{max} - T_{min}) = 1.8 \cdot 10^{-3} (333 - 233) = 0.18 \text{ В}.
\]

3. Допустимая нестабильность коллекторного тока
\[
\Delta I_К = \frac{I_К (T_{max} - T_{min})}{T_0} = \frac{5 \cdot 10^{-3} (333 - 233)}{293} = 1.65 \text{ мА}.
\]

4. Сопротивления в цепи эмиттера
\[
R_Э = \left[\frac{\Delta U_{зб}}{\Delta I_К} + (10...20) \frac{\Delta I_{кБО}}{\Delta I_К g_{11}} \right] = \frac{0.18}{1.65 \cdot 10^{-3}} + \frac{10 \cdot 32 \cdot 10^{-6}}{6 \cdot 10^{-3} \cdot 1.65 \cdot 10^{-3}} = 150 \text{ Ом}.
\]

5. Сопротивления развязывающего фильтра
\[
R_Ф = \frac{E_П - U_{КЭ}}{I_К} - R_Э = \frac{9 - 5}{5 \cdot 10^{-3}} - 150 = 650 \text{ Ом}.
\]
6. Сопротивления делителя, обеспечивающего подачу прямого смещения на эмиттерный переход транзистора,

\[R_1 = \frac{(10...20) \cdot E_\Pi}{g_{11} \cdot (E_\Pi - R_3 \cdot I_K)} = \frac{10 \cdot 9}{6 \cdot 10^{-3} \left(9 - 150 \cdot 5 \cdot 10^{-3}\right)} = 1,25 \ \text{kОм}, \]

\[R_2 = \frac{(10...20) \cdot E_\Pi}{g_{11} \cdot R_3 \cdot I_K} = \frac{10 \cdot 9}{6 \cdot 10^{-3} \cdot 150 \cdot 5 \cdot 10^{-3}} = 11,5 \ \text{kОм}. \]

7. Емкость блокировочных конденсаторов

\[C_B = C_\varepsilon = \frac{500}{W_0 \cdot R_3} = \frac{500}{6,28 \cdot 60 \cdot 10^6 \cdot 150} = 5250 \ \text{пФ}. \]

8. Емкость конденсатора развязывающего фильтра

\[C_\phi = \frac{50}{W_0 \cdot R_\phi} = \frac{50}{6,28 \cdot 60 \cdot 10^6 \cdot 650} = 250 \ \text{пФ}. \]

Пример 3.2. Рассчитать элементы питания резонансного усилителя, выполненного по каскодной схеме (рис. 3.5) на биполярных транзисторах с параметрами: \(E_\Pi = -12 \ \text{В}, \ U_{KЭ1} = U_{KЭ2} = 5 \ \text{В}, \ I_K = 5 \ \text{мА}, \ I_{KБО} = 2 \ \text{мкА}, \ g_{11} = 6 \ \text{мСм}, \ f_0 = 60 \ \text{МГц}, \) диапазон рабочих температур (-40…+60)°С.

Решение.

1. Изменение обратного тока коллектора

\[\Delta I_{KБО} = I_{KБО} \cdot 2^{0,1(T_{max} - T_0)} = 2 \cdot 2^{0,1(333-293)} = 32 \ \text{мкА}. \]

2. Тепловое смещение напряжения на базе транзистора при \(\gamma = 1,8 \ \text{мВ/К} \)

\[\Delta U_{DБ} = \gamma \left(T_{max} - T_{min}\right) = 1,8 \cdot 10^{-3} \left(333 - 233\right) = 0,18 \ \text{В}. \]

3. Нестабильность коллекторного тока

\[\Delta I_K = \frac{I_K \left(T_{max} - T_{min}\right)}{T_0} = \frac{5 \cdot 10^{-3} \left(333 - 233\right)}{293} = 1,65 \ \text{мА}. \]

4. Сопротивление в цепи эмиттера

\[R_3 = \left[\frac{\Delta U_{DБ}}{\Delta I_K} + (10...20) \frac{\Delta I_{KБО}}{\Delta I_K g_{11}} \right] = \frac{0,18}{1,65 \cdot 10^{-3}} + \frac{10 \cdot 32 \cdot 10^{-6}}{6 \cdot 10^{-3} \cdot 1,65 \cdot 10^{-3}} = 170 \ \text{Ом}. \]

5. Сопротивление развязывающего фильтра

\[R_\phi = \frac{E_\Pi - 2U_{KЭ}}{I_K} - R_3 = \frac{12 - 2 \cdot 5}{5 \cdot 10^{-3}} - 170 = 230 \ \text{Ом}. \]

6. Сопротивления

\[R_0 = \frac{(10...20) \cdot E_\Pi^2}{\left(2U_{KЭ} + R_3 \cdot I_K\right)R_3 \cdot I_K \cdot g_{11}} = 40 \ \text{kОм}, \]
\[
R_1 = \frac{R_0 \cdot R_3 \cdot I_K}{E_{II}} = \frac{40 \cdot 10^3 \cdot 170 \cdot 5 \cdot 10^{-3}}{12} = 3 \text{ кОм},
\]
\[
R_2 = \frac{R_3 \cdot U_{K\phi}}{E_{II}} = \frac{40 \cdot 10^3 \cdot 5}{12} = 16 \text{ кОм},
\]
\[
R_4 = R_0 - R_1 - R_2 = 40 - 3 - 16 = 21 \text{ кОм}.
\]
7. Емкость конденсатора развязывающего фильтра

\[
C_\phi = \frac{500}{6,28 \cdot 60 \cdot 10^6 \cdot 230} = 580 \text{ пФ}.
\]
8. Емкость блокировочного конденсатора

\[
C_3 = C_4 = \frac{500}{2\pi f_0 \cdot R_3} = \frac{500}{6,28 \cdot 60 \cdot 10^6 \cdot 170} = 4350 \text{ пФ}.
\]

Пример 3.3. Рассчитать резонансный усилитель (рис. 3.6) с коэффициентом усиления по мощности \(K_M > 30 \text{ дБ} \) на средней частоте \(f_0 = 465 \text{ кГц} \) и полосой пропускания \(P = 5 \text{ кГц} \) с использованием транзистора, имеющего следующие параметры: \(Y_{11} = 1000 \text{ мкСм}, \ Y_{12} = 1 \text{ мкСм}, \ Y_{22} = 34 \text{ мкСм}, \ Y_{21} = 32000 \text{ мкСм}, \ C_{11} = 1000 \text{ пФ}, \ C_{12} = 22 \text{ пФ}, \ C_{22} = 83 \text{ пФ}, \ g_{11} = 4800 \text{ мкСм}, \ g_{12} = 50 \text{ мкСм}, \ g_{22} = 214 \text{ мкСм}, \ |Y_{21}| = 25 \text{ мСм}, \ C_K = 35 \text{ пФ}, \ f_{ГР} = 600 \text{ кГц} \).

Решение.

Рис. 3.6. Резонансный усилитель

1. Задаемся конструктивной добротностью контура \(Q_K = 150 \), принимаем \(C = 400 \text{ пФ} \) и находим индуктивность контура

\[
L = \frac{1}{(2\pi f_0)^2 \cdot C} = \frac{1}{(6,28 \cdot 465 \cdot 10^3)^2 \cdot 400 \cdot 10^{-12}} = 290 \text{ мкГн}
\]

и характеристическое сопротивление

\[
\rho = \sqrt{\frac{L}{C}} = \sqrt{\frac{290 \cdot 10^{-6}}{400 \cdot 10^{-12}}} = 850 \text{ Ом}.
\]
2. Определяем собственную проводимость контура

\[g = \frac{1}{\rho Q_K} = \frac{1}{850 \cdot 150} = 7,8 \text{ мкСм}. \]

3. Ориентировочно принимаем число каскадов усилителя равным 2 (три резонансных контура, с учётом контура преобразования частоты), и находим полосу пропускания одного контура

\[\Pi_1 = \frac{\Pi}{\sqrt{3/2 - 1}} = \frac{5 \cdot 10^3}{\sqrt{3/2 - 1}} = 9,8 \text{ кГц}. \]

4. Вычислим эквивалентную проводимость контура

\[G_{0E} = \frac{1}{Q_3 \rho \cdot f_{\Pi} \cdot \rho} = \frac{9,8}{465 \cdot 850} = 25 \text{ мкСм}. \]

5. Учитывая, что проводимость нагрузки равна входной проводимости каскада, определяем коэффициенты связи, соответствующие максимальному усилию (проводимостью, вносимой в контур цепью нейтрализации \(R_N, C_N \), можно пренебречь)

\[m \approx \sqrt{\frac{G_{0E} - g}{2g_H}} = \sqrt{\frac{G_{0E} - g}{2g_{11}}} = \sqrt{\frac{25 - 7,8}{2 \cdot 4,8}} = 0,042, \]

\[n \approx \sqrt{\frac{G_{0E} - g}{2g_{KK}}} = \sqrt{\frac{25 - 7,8}{2 \cdot 214}} = 0,2. \]

6. Если используется цепочка нейтрализации, то рассчитываем

\[C_N = 0,9C_K \frac{n}{m} = \frac{0,9 \cdot 35 \cdot 10^{-12} \cdot 0,2}{0,042} = 150 \text{ пФ}, \]

\[R_N = \frac{1,1}{2\pi f_{\Pi} \rho C_K} \frac{m}{n} = \frac{1,1 \cdot 0,042}{2\pi \cdot 600 \cdot 10^3 \cdot 35 \cdot 10^{-12} \cdot 0,2} = 1750 \text{ Ом}. \]

7. Определяем собственную емкость контура из условия

\[C_K = C - m^2 C_H - n^2 C_{22} - m \cdot n \cdot C_{12}, \]

\[C_K = 400 - 0,042^2 \cdot 1000 - 0,2^2 \cdot 83 - 0,042 \cdot 0,2 \cdot 22 = 394 \text{ пФ}. \]

Принимаем \(C_K = 390 \text{ пФ}. \) Точная настройка контура на частоту \(f_0 = 465 \text{ кГц} \) осуществляется с помощью сердечника катушки индуктивности.

8. Рассчитываем резонансный коэффициент усиления каскада

\[K_{01} = m \cdot n \cdot \rho \cdot Q |Y_{21}| = 0,042 \cdot 0,2 \cdot 850 \cdot 150 \cdot 25 \cdot 10^{-3} = 8,4. \]

9. Находим коэффициент усиления по мощности при \(g_H = g_{11} \)

\[K_{M1} = K_{01}^2 = 8,4^2 = 70,56, \quad K_{M1} = 18,5 \text{ дБ}. \]

Следовательно, двухкаскадный усилитель будет иметь коэффициент усиления по мощности \(K_M = 2 K_{M1} = 37 \text{ дБ}, \) что соответствует условию задачи.
Пример 3.4. Рассчитать каскад резонансного усилителя с двойным автотрансформаторным включением колебательного контура по следующим исходным данным (рис. 3.7): \(f_{\text{min}} = 150 \, \text{кГц} \); \(f_{\text{max}} = 408 \, \text{кГц} \); \(\Pi_{\text{TP}} = 9 \, \text{кГц} \); \(d = 0,015 \); \(\sigma = 2 \); \(E_{K0} = -9 \, \text{В} \); \(I_K = 1 \, \text{мА} \); \(\Delta T = 30^\circ\text{C} \); \(E_K = -5 \, \text{В} \); \(f_{\text{FR}} = 100 \, \text{МГц} \). Конденсатор переменной емкости: \(C_{\text{min}} = 10 \, \text{пФ} \); \(C_{\text{max}} = 365 \, \text{пФ} \). Собственная емкость катушки \(C_{\text{KAT}} = 20 \, \text{пФ} \). Транзистор следующего каскада такой же, что и в рассчитываемом каскаде. Параметры транзистора: \(g_{11} = 0,7 \, \text{мСм} \); \(g_{22} = 10 \, \text{мкСм} \); \(Y_{21} = 31 \, \text{мСм} \); \(r_h = 50 \, \text{Ом} \); \(\alpha_0 = 0,98 \); \(C_{11} = 160 \, \text{пФ} \); \(C_{22} = 10 \, \text{пФ} \); \(C_{12} = 7,5 \, \text{пФ} \); \(I_{K0} = 10 \, \text{мкА} \).

Рис. 3.7. Резонансный усилитель с двойной автотрансформаторной связью

Решение.
1. Средняя емкость подстроочного конденсатора

\[
C_{II} = \frac{C_{\text{max}} - K_D^2 C_{\text{min}}}{K_D^2} - C_{\text{KAT}} - m^2 C_1 - n^2 C_2
\]

при \(K_D = \frac{f_{\text{max}}}{f_{\text{min}}} = \frac{408}{150} = 2,73 \) и \(m^2 C_1 + n^2 C_2 = 7 \, \text{пФ} \)

\[
C_{II} = \frac{365 - 2,73^2 \cdot 10}{2,73^2 - 1} - 20 - 7 = 18 \, \text{пФ}.
\]

Выбираем конденсатор КПК-1, имеющий \(C_{II_{\text{min}}} = 6 \, \text{пФ} \), \(C_{II_{\text{max}}} = 25 \, \text{пФ} \).
2. Находим максимальную эквивалентную емкость контура

\[
C_{\text{Э_{max}}} = C_{\text{max}} + C_{II} + C_{\text{KAT}} + m^2 C_1 + n^2 C_2 = 365 + 18 + 20 + 7 = 410 \, \text{пФ}.
\]
3. Индуктивность контурной катушки

\[
L = \frac{1}{\left(2\pi f_{\text{min}}\right)^2 C_{\text{Э_{max}}}} = \frac{1}{\left(6,28 \cdot 150 \cdot 10^3\right)^2 \cdot 410 \cdot 10^{-12}} = 2,8 \, \text{мГн}.
\]
4. Собственная проводимость колебательного контура для начала и конца диапазона соответственно

\[
g_{150} = \frac{d}{\rho} = \frac{d}{2\pi f_{\text{min}} \cdot L} = \frac{0,015}{6,28 \cdot 150 \cdot 10^3 \cdot 2,8 \cdot 10^{-3}} = 5,7 \, \text{мкСм},
\]

64
\[g_{408} = \frac{d}{\rho} = \frac{d}{2\pi f_{\text{max}} \cdot L} = \frac{0,015}{6,28 \cdot 408 \cdot 10^{-3} \cdot 2,8 \cdot 10^{-3}} = 2,1 \text{ мкСм.} \]

5. Рассчитываем параметры элементов схемы питания (рис. 3.5). Принимая \(U_{R\Phi} = 1 \text{ В} \), получаем

\[R_3 = \frac{\alpha_0 (E_{K0} - U_{R\Phi} - E_K)}{I_K - I_{K0} \cdot 2^{0,1\Delta T}} = \frac{0,98(9 - 1 - 5)}{10^{-3} - 10^{-5} \cdot 2^{0,130}} = 3,17 \text{ кОм.} \]

Выбираем \(R_3 = 3 \text{ кОм.} \)

\[R_2 = \frac{(\sigma - 1)(E_{K0} - U_{R\Phi})}{I_K - \sigma I_{K0} \cdot 2^{0,1\Delta T}} = \frac{(2 - 1)(9 - 1)}{10^{-3} - 2 \cdot 10^{-5} \cdot 2^{0,130}} = 9,5 \text{ кОм.} \]

Выбираем \(R_2 = 9,1 \text{ кОм.} \)

\[R_1 = \frac{1,25R_1R_2(\sigma - 1)}{\alpha_0 \sigma R_2 - (\sigma - 1)(R_3 + R_2)} = \frac{1,25 \cdot 3 \cdot 10^3 \cdot 9,1 \cdot 10^3 \cdot (2 - 1)}{0,98 \cdot 2 \cdot 9,1 \cdot 10^3 - (2 - 1)(3 \cdot 10^3 + 9,1 \cdot 10^3)} = 5,95 \text{ кОм.} \]

Принимаем \(R_1 = 6,2 \text{ кОм.} \)

6. Находим \(G_1 = g_{22} = 10 \text{ мкСм}; \)

\[G_2 = g_{11} + \frac{1}{R_1} + \frac{1}{R_2} = 7 \cdot 10^{-4} + \frac{1}{9,1 \cdot 10^3} + \frac{1}{6,2 \cdot 10^3} = 1 \text{ мСм.} \]

7. Блокировочная емкость

\[C_3 \geq \frac{100}{2\pi f_{\text{min}} \cdot R_3} = \frac{100}{6,28 \cdot 150 \cdot 10^3 \cdot 3 \cdot 10^3} = 3,6 \cdot 10^{-8} \text{ Ф.} \]

Выбираем \(C_3 = 0,036 \text{ мкФ.} \)

8. Сопротивление

\[R_{\Phi} = \frac{U_{R\Phi}}{I_K + \frac{E_{K0} - U_{R\Phi}}{R_1 + R_2} \cdot 10^{-3}} = \frac{1}{9 - 1} \cdot \frac{1}{6,2 + 9,1}^{10^{-3}} = 650 \text{ Ом.} \]

Принимаем \(R_{\Phi} = 620 \text{ Ом.} \)

9. Блокировочная ёмкость

\[C_{\Phi} \geq \frac{100}{2\pi f_{\text{min}} \cdot R_{\Phi}} = \frac{100}{6,28 \cdot 150 \cdot 10^3 \cdot 620} = 180 \cdot 10^{-9} \text{ Ф, } C_{\Phi} = 0,22 \text{ мкФ.} \]

10. Полагая монтажную ёмкость входа следующего каскада \(C_{M2} = 5 \text{ пФ} \), определим разделятельную ёмкость из условий

\[C_p \geq (20...50)C_{BX} = (20...50)5 \cdot 10^{-12} = (100...250) \cdot 10^{-12} \text{ Ф,}\]

\[C_p \geq \frac{50}{2\pi f_{\text{min}} \cdot g_{BY2}} = \frac{50}{6,28 \cdot 150 \cdot 10^3} = 5,4 \cdot 10^{-8} \text{ Ф.} \]
Принимаем $C_p = 0.056$ мкФ.

11. Коэффициент устойчивого усиления на максимальной частоте при $K_y = 0.9$

$$K_{0УСТ} = \frac{\sqrt{2K_y (1-K_y)}}{2\pi f_{\text{max}} \cdot C_{12}} = \frac{\sqrt{2 \cdot 0.9 (1-0.9) \cdot 31 \cdot 10^{-3}}}{6.28 \times 408 \cdot 10^3 \cdot 7.5 \cdot 10^{-12}} = 17$$

12. Определяем вспомогательный коэффициент, необходимый для обеспечения требуемой полосы пропускания Π_{TP},

$$\alpha = \frac{\Pi_{TP}}{d f_{\text{min}}} - 1 = \frac{9 \cdot 10^3}{0.015 \cdot 150 \cdot 10^3} - 1 = 3$$

которому соответствует полоса пропускания в конце диапазона

$$\Pi_K = \frac{\Pi_{TP} \cdot K_y (1 + \alpha K_y)}{1 + \alpha} = \frac{9 \cdot 10^3 \cdot 2.73 (1 + 3 \cdot 2.73)}{1 + 3} = 56.6 \cdot 10^3 \text{ Гц}$$

и эквивалентное затухание

$$d_3 = \frac{\Pi_k}{f_{\text{max}}} = \frac{56.6 \cdot 10^3}{408 \cdot 10^3} = 0.138.$$

13. Рассчитываем максимальный коэффициент усиления

$$K_{0\text{max}} = \frac{0.5 \cdot |Y_{21}|}{\sqrt{G_1^2 G_2}} \left(1 - \frac{d}{d_3}\right) = \frac{0.5 \cdot 31 \cdot 10^{-3}}{\sqrt{10 \cdot 10^{-6} \cdot 10^{-3}}} \left(1 - \frac{0.015}{0.138}\right) = 138.$$

Так как $K_{0\text{max}} > K_{0УСТ}$, то дальнейший расчёт ведём на получение в конце поддиапазона $K_{0\text{max}} = K_{0УСТ}$.

14. Определяем коэффициент усиления в начале диапазона

$$K_{0НН} = K_{0УСТ} \left(\frac{1 + \alpha \cdot K_y}{K_y (1 + \alpha)}\right) = 17 \cdot \frac{1 + 3 \cdot 2.73}{2.73 (1 + 3)} = 14.35.$$

15. На минимальной частоте поддиапазона находим вспомогательные коэффициенты

$$N = 0.5 g_{130} \left(\frac{\Pi_{TP}}{\Pi_k} - 1\right) = 0.5 \cdot 5.7 \cdot 10^{-6} \left(\frac{9 \cdot 10^3}{56.6 \cdot 10^3} - 1\right) = 8.54 \text{ мкСм},$$

$$M = \frac{\Pi_{TP} \cdot g \cdot K_{0НН}}{\Pi_k \cdot |Y_{21}|} = \frac{9 \cdot 10^3 \cdot 5.7 \cdot 10^{-6} \cdot 14.35}{56.6 \cdot 10^3 \cdot 31 \cdot 10^{-3}} = 0.01053.$$

16. Рассчитываем коэффициенты включения

$$m = \sqrt{\frac{N}{G_1} - \frac{N^2 - G_2}{G_1^2} M^2} = 0.082,$$

$$n = \sqrt{\frac{N}{G_2} - \frac{N^2 - G_1}{G_2^2} M^2} = 0.128.$$
17. Проверяем правильность расчётов, для чего находим

\[d_{3150} = d \left(1 + \frac{m^2 G_1 + n^2 G_2}{g} \right) = 0,06, \]

\[d_{3408} = 0,015 \left(1 + \frac{0,082^2 \cdot 10^{-5} + 0,128^2 \cdot 10^{-3}}{5,7 \cdot 10^{-6} + 2,1 \cdot 10^{-6}} \right) = 0,138, \]

откуда \[\Pi_{tr} = d_{3150} f_{min} = 0,06 \cdot 150 \cdot 10^3 = 9 \cdot 10^4 \text{ Гц}. \]

18. Находим резонансные коэффициенты усиления в начале и в конце поддиапазона

\[K_{0150} = \frac{m \cdot n \cdot |Y_{21}|}{g_{\phi}} = \frac{m \cdot n \cdot |Y_{21}|}{g + m^2 G_1 + n^2 G_2} = 14,4, \]

\[K_{0408} = \frac{0,082 \cdot 0,128 \cdot 31 \cdot 10^{-3}}{2,1 \cdot 10^{-6} + 0,082^2 \cdot 10^{-5} + 0,128^2 \cdot 10^{-3}} = 17,2, \]

которые достаточно близки к \[K_{0УСТ}. \]

Пример 3.5. Резонансный усилитель собран на биполярном транзисторе по схеме с общим эмиттером. Коэффициенты включения транзистора и нагрузки в контуре соответственно равны \(m = 0,2 \) и \(n = 0,6 \). Контур с собственным сопротивлением потерь \(r_K = 10 \text{ Ом} \) и \(d_K = 0,01 \) настроен на резонансную частоту. Эквивалентная емкость контура \(C = 50 \text{ нФ} \). Параметры транзистора: \(Y_{21} = 36 \text{ мА/В}, g_{11} = 1 \text{ мСм}; g_{22} = 10 \text{ мкСм}; C_{12} = 6 \text{ нФ} \). Определить максимальный резонансный коэффициент усиления и проверить на устойчивость. Усилитель нагружен на идентичный каскад.

Решение.

1. Определяем характеристическое сопротивление контура

\[\rho = Q r_K = \frac{r_K}{d_K} = \frac{10}{0,01} = 1000 \text{ Ом}. \]

2. По заданной эквивалентной ёмкости рассчитываем индуктивность контура

\[L_K = \rho^2 \cdot C_K = (1000)^2 \cdot 50 \cdot 10^{-12} = 50 \text{ мкГн}. \]

3. Находим резонансную частоту

\[f_0 = \frac{1}{2 \pi \sqrt{L_K C}} = \frac{1}{6,28 \sqrt{50 \cdot 10^{-6} \cdot 50 \cdot 10^{-12}}} = 3,18 \text{ МГц}. \]

4. Рассчитываем собственную проводимость контура

\[g_K = \frac{1}{Q \rho} = \frac{d_K}{\rho} = \frac{0,01}{1000} = 0,001 \text{ мкСм}. \]
5. Определяем эквивалентную резонансную проводимость контура

\[G_{0E} = m^2 g_{22} + g_K + n^2 g_H = 0,37 \text{ мСм.} \]

6. Находим резонансный коэффициент усиления

\[K_0 = \frac{m \cdot n \cdot |Y_{21}|}{G_{0E}} = \frac{0,2 \cdot 0,6 \cdot 36 \cdot 10^{-3}}{0,37 \cdot 10^{-3}} = 10,87. \]

7. Вычисляем проводимость внутренней обратной связи транзистора

\[b_{12} = 2\pi f_0 C_{12} = 6,28 \cdot 3,18 \cdot 10^6 \cdot 6 \cdot 10^{-12} = 119,8 \text{ микСм}, \]

получим устойчивый резонансный коэффициент усиления

\[K_{0\text{УСТ}} = 0,45 \sqrt{\frac{|Y_{21}|}{b_{12}}} = 0,45 \sqrt{\frac{36 \cdot 10^{-3}}{119,8 \cdot 10^{-6}}} = 8. \]

Так как \(K_0 > K_{0\text{УСТ}} \), то необходимы меры по повышению устойчивости резонансного усилителя.

Пример 3.6. Определить коэффициент шума резонансного усилителя вместе с входной цепью (связь трансформаторная). Параметры транзистора: \(\alpha_0 = 0,98; I_K = 1 \text{ мА}; Y_{21} = 29,6 \text{ мСм}; \) на нижней частоте диапазона \(f_{\text{min}} = 9,5 \text{ МГц}; Y_{21} = 29,3 \text{ мСм}; \) на верхней частоте диапазона \(f_{\text{max}} = 12 \text{ МГц}; \) \(\tau_\delta = 50 \text{ Ом}; C_{11} = 116 \text{ пФ} \) (на частоте 9,5 МГц); \(C_{11} = 107 \text{ пФ} \) (на частоте 12 МГц); коэффициенты включения антенны в контур \(m = 2,14; \) транзистора в контур \(n_3 = 0,075; \) собственное затухание контура \(d = 0,015, \) индуктивность контура \(L = 5 \text{ мкГн}, \) эквивалентное затухание контура \(\delta_\delta \leq 0,03, \) \(d_{CB} = 0,04, \) коэффициент связи \(k = 0,3. \)

Решение.

1. Вычисляем шумовые параметры транзистора

\[G_{1I} = 20 I_K \left(\frac{1}{\alpha_0} - 1 \right) = 20 \cdot 1 \cdot 10^{-3} \left(\frac{1}{0,98} - 1 \right) = 0,408 \text{ мСм.} \]

\(R_{III2} \) – шумовое сопротивление на \(f_{\text{max}} = 12 \text{ МГц} \)

\[R_{III2} = \frac{20 \alpha_0 I_2}{|Y_{21}|} \cdot \frac{20 \cdot 1 \cdot 10^{-3} \cdot 0,98}{29,3 \cdot 10^{-3}} = 0,683 \text{ Ом.} \]

\(R_{III9,5} \) – шумовое сопротивление на \(f_{\text{min}} = 9,5 \text{ МГц} \)

\[R_{III9,5} = \frac{20 \cdot 1 \cdot 10^{-3} \cdot 0,98}{29,6 \cdot 10^{-3}} = 0,677 \text{ Ом.} \]

Примем для всего диапазона \(R_{III} = 0,68 \text{ Ом.} \)

2. Рассчитываем входную проводимость транзистора на крайних частотах поддиапазона:

на частоте \(f_{\text{min}} = 9,5 \text{ МГц} \)

\[b_{11\text{min}} = 2\pi f_\text{min} \cdot C_{11\text{min}} = 2\pi \cdot 9,5 \cdot 10^6 \cdot 116 \cdot 10^{-12} = 6,9 \text{ мСм,} \]
на частоте $f_{\text{MAX}} = 12$ МГц

$$b_{1\text{min}} = 2\pi f_{\text{min}} \cdot C_{1\text{min}} = 2\pi \cdot 12 \cdot 10^6 \cdot 116 \cdot 10^{-12} = 8 \text{ мСм}. $$

3. Определяем на крайних частотах поддиапазона проводимости

$$g'_{9,5} = \frac{g}{n^2} = \frac{d}{n^2\rho} = \frac{d}{n^22\pi f_{\text{min}}L} = 0,892 \cdot 10^{-2} \text{ См},$$

$$g'_{12} = \frac{0,015}{0,075^2 \cdot 6,28 \cdot 12 \cdot 10^6 \cdot 5 \cdot 10^{-6}} = 0,713 \cdot 10^{-2} \text{ См}. $$

4. Находим пересчитанную проводимость источника сигнала на крайних частотах диапазона

$$g'_{c9,5} = \frac{k^2 \cdot d_{cB}}{n^2 \cdot 2\pi \cdot f \cdot L} = \frac{0,3^2 \cdot 0,04}{0,075^2 \cdot 6,28 \cdot 9,5 \cdot 10^6 \cdot 5 \cdot 10^{-6}} = 2,15 \text{ мСм},$$

$$g'_{c12} = \frac{k^2 \cdot d_{cB}}{n^2 \cdot 2\pi \cdot f \cdot L_1} = \frac{0,3^2 \cdot 0,04}{0,075^2 \cdot 6,28 \cdot 12 \cdot 10^6 \cdot 5 \cdot 10^{-6}}=1,72 \text{ мСм}. $$

5. Рассчитываем коэффициент шума на крайних частотах диапазона

$$III = 1 + \frac{g'}{g_c} + \frac{r_\delta (g_c' + g)}{g_c} + \frac{G_{III} [1 + r_\delta (g_c' + g)]^2}{g_c} +$$

$$+ \frac{r_\delta^2 b^2_{11} (1 + G_{III} r_\delta)^2}{g_c} + \frac{R_{III} (g_c' + g + g_{11})^2}{g_c'},$$

$$III_{9,5} = 9,71; III_{12} = 9,9 .$$

Пример 3.7. Рассчитать СВЧ усилитель с центральной частотой $f_0 = 3,2$ ГГц на полевом транзисторе ЗП321А.

Решение.

1. По справочным данным для S-параметров определяется инвариантный коэффициент устойчивости. Для данного транзистора $K_y = 0,691$.

2. Так как $K_y < 1$, то необходим перевод транзистора из области потенциальной устойчивости в область безусловной устойчивости. Для этого параллельно транзистору следует включить стабилизирующий резистор R_{CT}. При выбранном $K_{YAE} = 1,1$ рассчитывается

$$R_{CT} = \frac{z_b \left[(1 + S_{22})^2 - (S_{11} + \Delta S)^2 \right]}{2 (K_{YAE} - K_y) |S_{12}S_{21}|} = 651 \text{ Ом}.$$

3. Находимся матрица S-параметров стабилизирующего резистора

$$S_{CT} = \begin{bmatrix} 1 & 2r \\ 1 + 2r & 1 + 2r \\ 2r & 1 \\ 1 + 2r & 1 + 2r \end{bmatrix} = \begin{bmatrix} -0,037 & 0,963 \\ 0,963 & -0,037 \end{bmatrix},$$

где $r = R_{CT} / z_b = 651 / 50 = 13,02$
4. Определяем S-параметры основного активного элемента (АЭ)

\[
S_{11АЭ} = S_{11} + \frac{S_{12}S_{21}S_{11CT}}{D} = |S_{11АЭ}| \cdot e^{j\phi_{11}} = 0,846 \cdot e^{-j51,0},
\]

\[
S_{12АЭ} = \frac{S_{12}S_{12CT}}{D} = |S_{12АЭ}| \cdot e^{j\phi_{12}} = 0,044 \cdot e^{-j62},
\]

\[
S_{21АЭ} = \frac{S_{21}S_{21CT}}{D} = |S_{21АЭ}| \cdot e^{j\phi_{21}} = 1,513 \cdot e^{-j128,1},
\]

\[
S_{22АЭ} = S_{22CT} + \frac{S_{12CT}S_{21CT}}{D} = |S_{22АЭ}| \cdot e^{j\phi_{22}} = 0,701 \cdot e^{-j30,6},
\]

где $D = 1 - S_{22}S_{11CT}$.

5. Коэффициент передачи номинальной мощности

\[
K_{P.НОМ.\text{max}} = \frac{|S_{21}|}{|S_{12}|} \left(K_{УАЭ} - \sqrt{K_{УАЭ}^2 - 1} \right) = 22,
\]

\[
K_{P.НОМ.\text{max}} = 13,4 \text{ дБ.}
\]

6. Оптимальные коэффициенты отражения

\[
\Gamma_{ГОПТ} = \frac{\beta_1 \pm \sqrt{\beta_1^2 - 4|C_1|^2}}{2C_1} = |\Gamma_{ГОПТ}| \cdot e^{j\phi_{ГОПТ}} = 0,933 \cdot e^{j57,2},
\]

\[
\Gamma'_{НОПТ} = \frac{\beta_2 \pm \sqrt{\beta_2^2 - 4|C_2|^2}}{2C_2} = |\Gamma'_{НОПТ}| \cdot e^{j\phi'_{НОПТ}} = 0,865 \cdot e^{j46,2},
\]

где $C_1 = S_{11АЭ} - \frac{S_{22АЭ}}{2} \cdot \Delta S_{АЭ}$, $C_2 = S_{22АЭ} - \frac{S_{11АЭ}}{2} \cdot \Delta S_{АЭ}$,

\[
\beta_1 = 1 + |S_{11АЭ}|^2 - |S_{22АЭ}||\Delta S_{АЭ}|^2, \quad \beta_2 = 1 + |S_{22АЭ}|^2 - |S_{11АЭ}||\Delta S_{АЭ}|^2.
\]

7. Входное сопротивление АЭ на частоте 3,2 ГГц

\[
Z_{ВХ.АЭ} = Z_{ВХ} \frac{1 + \frac{\xi_{ГОПТ}}{1 - \xi_{ГОПТ}}}{1 - \frac{\xi_{ГОПТ}}{1 - \xi_{ГОПТ}}} = 7,54 - j \cdot 91,23 \text{ Ом.}
\]

8. Выходное сопротивление АЭ

\[
Z_{ВЫХ.АЭ} = Z_{ВЫХ} \frac{1 + \frac{\xi_{ГОПТ}}{1 - \xi_{ГОПТ}}}{1 - \frac{\xi_{ГОПТ}}{1 - \xi_{ГОПТ}}} = 58,24 - j \cdot 113,35 \text{ Ом.}
\]

9. Для согласования выбираем Г-образные цепи, состоящие из двух одношлейфовых трансформаторов на микрополосковых линиях (МПЛ). Первый шлейф, включенный параллельно, компенсирует реактивную составляющую проводимости АЭ. Второй шлейф, представляющий собой четвертьволновый трансформатор полного сопротивления, согласует действительную составляющую проводимости АЭ с волновым сопротивлением подводящих линий (50 Ом).
10. Пересчитаем входное и выходное сопротивление АЭ в проводимости:

\[Y_{\text{ВХ.АЭ}} = \frac{1}{Z_{\text{ВХ.АЭ}}} = 0,9 + j \cdot 10,9 \text{ мСм}, \]

\[Y_{\text{ВЫХ.АЭ}} = \frac{1}{Z_{\text{ВЫХ.АЭ}}} = 3,59 + j \cdot 6,98 \text{ мСм}. \]

11. Так как после компенсации реактивной составляющей четвертьволновый трансформатор должен согласовать волновое сопротивление \(Z_B = 50 \text{ Ом} \) с сопротивлением

\[\frac{1}{R_C Y_{\text{ВХ.АЭ}}} = 1,1 \text{ кОм}, \]

то волновое сопротивление этого трансформатора должно быть

\[Z_{B,TP} = \sqrt{1100 \cdot 50} = 234 \text{ Ом}. \]

12. Из-за трудности реализации волнового сопротивления транзистора для согласования на входе целесообразно включить последовательную индуктивность \(L_1 \) и четвертьволновый трансформатор, а на выходе – Г-образную цепь на МПЛ. Согласующая индуктивность

\[L_1 = \frac{-L_T Z_{\text{ВХ.АЭ}}}{2\pi f_0} = \frac{91,23}{2\pi f_0} = 4,54 \text{ нГн}. \]

13. Рассчитаем параметры шлейфов 1…3 схемы на рис. 3.8, полагая \(\varepsilon = 5, \)

\(h = 1 \text{ мм}, \quad b_2 = b_3. \) Шлейф 1 – четвертьволновый трансформатор с волновым сопротивлением

\[Z_{B,TP1} = \sqrt{Z_B \cdot R_E \cdot Z_{\text{ВХ.АЭ}}} = 19,4 \text{ Ом}. \]

Тогда с учётом \(Z_{B,TP1} = 314 \sqrt{\left[1 + \frac{b}{h}\right]\sqrt{\varepsilon}} \) – находим ширину полосы \(b_1 = 6,2 \text{ мм} \) и геометрическую длину \(l_1 = \Lambda_1 / 4 = 11,4 \text{ мм} \) (здесь \(\varepsilon_{\phi_1} = 4,2; \quad \Lambda_1 = 45,5 \text{ мм} \)).

Рис. 3.8. СВЧ усилитель на полевом транзисторе

Шлейф 3 – четвертьволновый трансформатор с волновым сопротивлением

\[Z_{B,TP3} = \sqrt{Z_B / R_E \cdot Y_{\text{ВЫХ.АЭ}}} = 118 \text{ Ом}. \]
Полагая $Z_{В_{TP2}} = Z_{В_{TP3}}$ найдём ширину полосок $b_2 = b_3 = 0,19$ мм, длину $l_3 = \Delta_3/4 = 13$ мм, где $\varepsilon_{ф2} = \varepsilon_{ф3} = 3,3$; $\Delta_2 = \Delta_3 = 51,8$ мм.

Шлейф 2 – трансформатор полного сопротивления, входное сопротивление которого должно иметь индуктивный характер для компенсации реактивной составляющей проводимости $Y_{BX_{A2}}$. Для минимизации длины полоски используем короткозамкнутый шлейф, длина которого определяется из условия согласования

$$Z_{BX_2} = jZ_{В_{TP2}} \cdot \tan (k_2 l_2),$$

где $Z_{BX_2} = \frac{j}{6,98 \cdot 10^{-3}}$.

Отсюда $l_2 = 7,3$ мм.

3.2 Транзисторные усилители СВЧ-диапазона

В диапазоне частот 0,3...10 ГГц для расчета транзисторных усилителей используются матрицы рассеяния $|S|$. S-параметры произвольного СВЧ четырехполюсника, в том числе и транзистора, изменяются при подключении на входе и выходе стандартных линий передачи с волновым сопротивлением Z_B (рис. 3.9).

![Рис. 3.9. К расчету параметров СВЧ четырехполюсника](image)

Здесь a_i, b_i – нормированные падающие и отраженные волны соответственно, которые связаны с комплексными амплитудами токов I_i и напряжением U_i на зажимах четырехполюсника.

$$a_i = \frac{\delta_i + Z_B \cdot \delta}{2\sqrt{Z_B}}, \quad b_i = \frac{i\delta_i - Z_B \cdot \delta}{2\sqrt{Z_B}}, \quad i = 1, 2. \quad (3.29)$$

Связь падающих и отраженных волн устанавливается уравнениями четырехполюсника через S-параметры

$$b_1 = S_{11}a_1 + S_{12}a_2,$$

$$b_2 = S_{21}a_1 + S_{22}a_2,$$

откуда следует, что

$$S_{11} = \left| \frac{b_1}{a_1} \right|_{\omega_0 = 0} = \frac{Z_{BX} - Z_B}{Z_{BX} + Z_B}, \quad S_{22} = \left| \frac{b_2}{a_1} \right|_{\omega_0 = 0} = \frac{Z_{ВВХ} - Z_B}{Z_{ВВХ} + Z_B}. \quad (3.31)$$
Здесь $Z_{ВХ}$ – входное сопротивление четырёхполюсника при условии, что на выходе выключено Z_{B}; $Z_{ВЫХ}$ – выходное сопротивление четырёхполюсника с включенным на входе сопротивлением Z_{B}.

Для того, чтобы СВЧ транзистор или произвольный четырёхполюсник мог использовать в качестве усилителя, он должен быть активным. В пассивной цепи суммарная мощность, подводимая к входным и выходным зажимам четырёхполюсника неотрицательная. Условия пассивности с учетом S-параметров следующие:

$$|S_{11}|^2 + |S_{21}|^2 \leq 1, \quad |S_{22}|^2 + |S_{12}|^2 \leq 1, \quad |S_{11}|^2 + |S_{12}|^2 + |S_{22}|^2 - |ΔS|^2 \leq 1, \quad (3.32)$$

где $ΔS = S_{12}S_{21} - S_{11}S_{22}$.

Если хотя бы одно из условий (3.32) не выполняется, то четырёхполюсник активный и его можно использовать для усиления сигналов.

При проектировании СВЧ усилителей, прежде всего, необходимо обеспечить его устойчивость (отсутствие самовозбуждения) при работе с выбранными сопротивлениями $Z_{Г}$ и Z_{H}. В зависимости от значений S-параметров транзистор находится либо в области безусловной устойчивости, либо в области потенциальной устойчивости. Безусловная устойчивость (БУ) транзистора предполагает отсутствие самовозбуждения при подключении произвольных сопротивлений $Z_{Г}$, Z_{H} с положительными вещественными частями. Транзистор находится в области БУ, если выполняются условия

$$|S_{12}S_{21}| < 1 - |S_{11}|^2, \quad |S_{12}S_{21}| < 1 - |S_{22}|^2, \quad K_{Y} = \frac{1 - |S_{11}|^2 - |S_{22}|^2 + |ΔS|^2}{2|S_{12}S_{21}|} \geq 1. \quad (3.33)$$

Так как для большинства СВЧ транзисторов первые два условия в (3.33) всегда выполняются, то об устойчивости транзисторов можно судить по величине K_{Y}, называемой инвариантным коэффициентом устойчивости. Если $K_{Y} > 1$, то возможно двустороннее согласование транзистора с сопротивлением Z_{B}. При невыполнении хотя бы одного из условий (3.33) транзистор потенциально устойчив и для обеспечения устойчивости следует тщательно подбирать $Z_{Г}$ и Z_{H}.

Для расчета характеристик нагруженного четырёхполюсника (табл. 3.1) необходимо знать связь S-параметров с Y-параметрами (табл. 3.2).

Здесь: P_{H} – мощность, рассеиваемая в нагрузке; $P_{ВХ}$ – мощность, рассеиваемая на входном сопротивлении четырёхполюсника; $P_{ВЫХ,НOM}$ – номинальная выходная мощность; $P_{Г,НOM}$ – номинальная мощность генератора;

$$q_1 = \frac{4g 얘 g_{ВХ}}{|Y_{Г} + Y_{ВХ}|^2}, \quad q_2 = \frac{4g 얘 g_{ВЗХ}}{|Y_{Г} + Y_{ВЫХ}|^2} \quad - \text{коэффициенты рассогласования по входу и выходу соответственно; }$$

$$g_{Г} = Re[Y_{Г}]; \quad g_{ВХ} = Re[Y_{ВХ}]; \quad g_{ВЫХ} = Re[Y_{ВЫХ}]; \quad g_{H} = Re[Y_{H}].$$

73
Таблица 3.1

<table>
<thead>
<tr>
<th>Характеристика</th>
<th>Расчетное соотношение</th>
</tr>
</thead>
<tbody>
<tr>
<td>Входная проводимость (Y_{ВХ})</td>
<td>(Y_{11} - \frac{Y_{12}Y_{21}}{Y_{22} + Y_H} = Y_{11} + Y_{12}K)</td>
</tr>
<tr>
<td>Выходная проводимость (Y_{ВЫХ})</td>
<td>(Y_{22} - \frac{Y_{12}Y_{21}}{Y_{11} + Y_G})</td>
</tr>
<tr>
<td>Коэффициент передачи напряжения (K)</td>
<td>(\frac{U_{2}}{U_{1}} = -\frac{Y_{21}}{Y_{22} + Y_H})</td>
</tr>
<tr>
<td>Сквозной коэффициент передачи напряжения (K')</td>
<td>(\frac{K_{S}}{K_{1}} = -\frac{K}{Z_{r}Y_{ВХ}} + 1)</td>
</tr>
<tr>
<td>Коэффициент передачи тока (K_{I})</td>
<td>(\frac{K_{I}}{K_{1}} = -\frac{Y_{H}}{Y_{ВХ}})</td>
</tr>
<tr>
<td>Коэффициент передачи проходной мощности (K_{P})</td>
<td>(\frac{P_{H}}{P_{ВХ}} = \left</td>
</tr>
<tr>
<td>Коэффициент передачи номинальной мощности (K_{P, НОМ})</td>
<td>(\frac{P_{ВХ, НОМ}}{P_{Г, НОМ}} = \left</td>
</tr>
<tr>
<td>Реализуемый коэффициент передачи мощности (K_{P, НОМ})</td>
<td>(\frac{P_{H}}{P_{Г, НОМ}} = K_{P} \cdot q_{1} = K_{P, НОМ} \cdot q_{2})</td>
</tr>
</tbody>
</table>

Таблица 3.2

<table>
<thead>
<tr>
<th>S-параметры</th>
<th>Y-параметры</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S_{11} = \frac{(1-Y_{11}Z_{B})(1+Y_{22}Z_{H})+Y_{12}Y_{21}Z_{B}^{2}}{\Delta Y})</td>
<td>(Y_{11} = \frac{(1-S_{11})(1+S_{22})+S_{12}S_{21}}{\Delta S \cdot Z_{B}})</td>
</tr>
<tr>
<td>(S_{12} = -\frac{2Y_{12}Z_{B}}{\Delta Y})</td>
<td>(Y_{12} = -\frac{2S_{12}}{\Delta S \cdot Z_{B}})</td>
</tr>
<tr>
<td>(S_{21} = -\frac{2Y_{21}Z_{B}}{\Delta Y})</td>
<td>(Y_{21} = -\frac{2S_{21}}{\Delta S \cdot Z_{B}})</td>
</tr>
<tr>
<td>(S_{22} = \frac{(1+Y_{11}Z_{B})(1-Y_{22}Z_{B})+Y_{12}Y_{21}Z_{B}^{2}}{\Delta Y})</td>
<td>(Y_{22} = \frac{(1+S_{11})(1-S_{22})+S_{12}S_{21}}{\Delta S \cdot Z_{B}})</td>
</tr>
<tr>
<td>(\Delta Y = (1+Y_{11}Z_{B})(1+Y_{22}Z_{B}) - Y_{12}Y_{21}Z_{B}^{2})</td>
<td>(\Delta S = (1+S_{11})(1-S_{22}) - S_{12}S_{21})</td>
</tr>
</tbody>
</table>
Коэффициент передачи номинальной мощности:

\[K_{P,ном} = \frac{|S_{21}|^2 (1 - |\Gamma_Г|^2)}{\left| 1 - S_1 \Gamma_Г \right|^2 - |\Delta S \cdot \Gamma_Г - S_{22}|^2}, \]
(3.34)

где \(\Gamma_Г = \frac{(Z_Г - Z_В)}{(Z_Г + Z_В)} \) — коэффициент отражения от генератора \(Z_Г \), включенного в тракт с волновым сопротивлением \(Z_В \).

\[K'_P = \frac{|S_{21}|^2 (1 - |\Gamma_Г|^2)(1 - |\Gamma_Н|^2)}{\left| 1 - \Gamma_Г S_{11} - \Gamma_Н S_{22} + \Delta S \Gamma_Г \Gamma_Н \right|^2}, \]
(3.35)

где \(\Gamma_Н = \frac{Z_Н - Z_В}{Z_Н + Z_В} \) — коэффициент отражения от нагрузки \(Z_Н \), включенной в тракт с волновым сопротивлением \(Z_В \).

На рис. 3.10 приведена структурная схема однокаскадного СВЧ усилителя, состоящего из активного элемента (АЭ), входной и выходной реактивных согласующих цепей (СЦ1, СЦ2). Волновые сопротивления подводящих линий равны \(Z_{В1} \) и \(Z_{В2} \). Стрелками отмечены коэффициенты отражения \(\Gamma_Г \). Назначение согласующих цепей СЦ1, СЦ2 состоит в согласовании АЭ (транзистор СВЧ) по входу и выходу с подводящими линиями.

Если транзистор находится в ОПУ, его следует перевести в ОБУ, включив последовательно или параллельно стабилизирующий резистор \(R_{cm} \) (рис. 3.11).

Рис. 3.10. Однокаскадный СВЧ усилитель

Рис. 3.11. Варианты включения стабилизирующего резистора

75
Параллельное включение R_{cm} (рис. 3.11 а) применяется в том случае, когда транзистор теряет устойчивость в режиме, близком к холостому ходу, а последовательное (рис. 3.11 б) – в режиме, близком к короткому замыканию.

Стабилизирующий резистор рассчитывается следующим образом.

1. Выбирается нужный инвариантный коэффициент устойчивости составного АЭ (с учетом R_{cm}) $K_{y,АЭ} = 1,03…1,1$.
2. Рассчитывается величина стабилизирующего резистора:
 - для параллельного включения
 $$ R_{cm} = \frac{Z_B \left[1 + S_{22}^2 \right] + \left| S_{11} + \Delta S \right|^2}{2 \left(K_{y,АЭ} - K_y \right) \left| S_{12} \cdot S_{21} \right|}; \quad (3.36) $$
 - для последовательного соединения
 $$ R_{cm} = \frac{2Z_B \left(K_{y,АЭ} - K_y \right) \left| S_{12} \cdot S_{21} \right|}{\left| 1 - S_{22} \right|^2 - \left| S_{11} - \Delta S \right|^2}. \quad (3.37) $$

Здесь $K_y < 1$ – инвариантный коэффициент устойчивости транзистора, входящего в ОПУ; S_{ij} – параметры рассеяния транзистора на той частоте диапазона работы усилителя, где K_y принимает наименьшее значение.

3. Рассчитываются S-параметры четырехполюсника, состоящего из стабилизирующего резистора:
 - для параллельного включения
 $$ S_{CT} = \begin{bmatrix} 1 & 2r \\ 1+2r & 1+2r \\ 2r & 1 \\ 1+2r & 1+2r \end{bmatrix}; \quad (3.38) $$
 - для последовательного включения
 $$ S_{CT} = \begin{bmatrix} r & 2 \\ 2+r & 2+r \\ 2 & r \\ 2+r & 2+r \end{bmatrix}, \quad (3.39) $$

где $r = R_{CT}/Z_B$.

4. Определяются S-параметры составного АЭ, состоящего из каскадно включенных транзистора и стабилизирующего резистора

$$ S_{11,АЭ} = \frac{S_{11} + S_{12}S_{11CT}}{D}; \quad S_{12,АЭ} = \frac{S_{12}S_{12CT}}{D}, $$
$$ S_{21,АЭ} = \frac{S_{22}S_{21CT}}{D}, \quad S_{22,АЭ} = \frac{S_{22CT} + S_{12CT}S_{21CT} \cdot S_{22}}{D}. \quad (3.40) $$

где $D=1-S_{22}S_{11CT}$; S_{ij} – параметры транзистора; S_{ijCT} – параметры, рассчитываемые по формулам (3.38) или (3.39).
Так как стабилизирующая цепь пассивна \((S_{12CT} = S_{21CT})\), то из (3.40) следует важное равенство
\[
\frac{S_{21АЭ}}{S_{12АЭ}} = \frac{S_{12}}{S_{12}},
\]
которое используется при расчёте коэффициента усиления.

Существует два основных режима усиления: режим экстремального усиления и режим минимального коэффициента шума.

В режиме экстремального усиления коэффициент передачи номинальной мощности АЭ при \(K_{U,АЭ} > 1\) равен
\[
K_{p,НОМ,ЭКСТР} = \left| \frac{S_{21}}{S_{12}} \right| \left(K_{U,АЭ} m \sqrt{K_{U,АЭ}^2 - 1} \right).
\]

Знак «минус» соответствует АЭ, находящемуся в ОБУ, и в этом случае \(K_{p,НОМ} \) достигает максимального значения. Знак «плюс» соответствует АЭ, находящемуся в ОПУ, и в этом случае \(K_{p,НОМ} \) принимает минимальное значение.

При выполнении условия \(K_{U,АЭ} > 1\) экстремальные режимы достигаются при двустороннем комплексном согласовании на входе и на выходе АЭ.

\[
Z_{Вых.C\Pi(1)} = Z_{Вх.АЭ};
Z_{Вых.АЭ} = Z_{Вых.C\Pi(2)},
\]

\[
Z_{Вх.АЭ} = Z_B \frac{1 + \Gamma_{ГОПТ}}{1 - \Gamma_{ГОПТ}}; \quad Z_{Вых.АЭ} = Z_B \frac{1 + \Gamma_{НОПТ}}{1 - \Gamma_{НОПТ}},
\]

где \(Z_B\) – стандартное волновое сопротивление, для которого рассчитаны \(S\)-параметры АЭ.

\[
\Gamma_{ГОПТ} = \frac{B_1 + \sqrt{B_1^2 - 4|C_1|^2}}{2C_1}; \quad \Gamma_{НОПТ} = \frac{B_2 + \sqrt{B_2^2 - 4|C_2|^2}}{2C_2}.
\]

представляют собой оптимальные коэффициенты отражения от генератора и нагрузки в тракте с волновым сопротивлением \(Z_0\);

\[
C_1 = S_{11АЭ} - S_{22АЭ} \cdot \Delta S_{АЭ}; \quad C_2 = S_{22АЭ} - S_{11АЭ} \cdot \Delta S_{АЭ};
B_1 = 1 + |S_{11АЭ}|^2 - |S_{22АЭ}|^2 - |\Delta S_{АЭ}|^2, \quad B_2 = 1 + |S_{22АЭ}|^2 - |S_{11АЭ}|^2 - |\Delta S_{АЭ}|^2.
\]

В выражении (3.45) знак «минус» берётся при \(B_1(2) > 0\), знак «плюс» - при \(B_1(2) < 0\).

Согласующие цепи должны обеспечивать согласование подводящих линий с волновыми сопротивлениями \(Z_{Вх1}, Z_{Вх2}\) с комплексными сопротивлениями \(Z_{Вх.АЭ}, Z_{Вых.АЭ}\) соответственно.

Следует отметить, что при двустороннем согласовании все три коэффициента передачи мощности совпадают:

\[
K_p = K'_p = K_{p,НОМ}.
\]
Коэффициент шума СВЧ усилителя при произвольном коэффициенте отражения Γ_r (шум стабилизирующего резистора R_{ct} обычно гораздо ниже шума транзистора и поэтому не учитывается),

$$III = III_{MIN} + \frac{(\Delta III_{MIN})^2}{(\Gamma_{III,OPT})^2(1-(\Gamma_r)^2)},$$

где Γ_r – коэффициент отражения от генератора в стандартном тракте; III_{MIN} – минимальный коэффициент шума усилителя, который получается при $\Gamma_r = \Gamma_{III,OPT}$. Шумовые свойства СВЧ транзисторов полностью описываются параметрами III_{MIN}, $\Gamma_{III,OPT}$ и ΔIII, которые зависят от типа используемых транзисторов. В табл. 3.3 приведены примеры параметров транзисторов.

Режим минимального коэффициента шума достигается при оптимальном рассогласовании, когда выходное сопротивление СЦ должно быть равно

$$Z_{Вых,СЦ1} = \frac{Z_B(1+\Gamma_{III,OPT})}{1-\Gamma_{III,OPT}}.$$ (3.48)

Синтез согласующей цепи СЦ сводится к решению задачи двустороннего согласования действительного сопротивления $Z_{В1}$ с комплексной нагрузкой (рис. 2.15)

$$Z_{ин} = \frac{Z_{Вых,СЦ1}}{Z}.$$ (3.49)

В режиме оптимального рассогласования по входу выходное сопротивление АЭ

$$Z_{Вых,АЭ} = Z_B \frac{1+\Gamma_2}{1-\Gamma_2},$$ (3.50)

где

$$\Gamma_2 = S_{2,АЭ} - \frac{S_{12,АЭ}S_{21,АЭ} \cdot \Gamma_{III,OPT}}{1+S_{11,АЭ} \cdot \Gamma_{III,OPT}}.$$ (3.51)

представляет коэффициент отражения от АЭ по входу в тракте с волновым сопротивлением Z_B.

Синтез СЦ2 основан на согласовании $Z_{Вых,АЭ}$ с волновым сопротивлением $Z_{В2}$. Коэффициент передачи мощности в этом режиме определяется по (3.34) и (3.35), в которых нужно подставить найденные коэффициенты отражения, а в качестве S-параметров следует подставить S-параметры составного АЭ $S_{6АЭ}$ (3.40).

Расчет высокочастотных параметров биполярного транзистора

Исходные данные.

Диапазон частот $f = (170-180)$ МГц.

Транзистор KT368. Режим работы транзистора по постоянному току $U_{КЭ0} = 5$ В, $I_{K0} = 1$ мА. Справочные параметры транзистора: $C_K = 1.7$ пФ, $\tau_K = 15$ пс; $h_{21} = 50$. Границная частота по крутизне $f_s = 1347$ МГц.
Необходимо рассчитать высокочастотные параметры транзистора: \(g_{11}, C_{11}, g_{21}, b_{21}, y_{21}, g_{12}, C_{12}, y_{12}, g_{22}, C_{22} \).

Так как коэффициент перекрытия диапазона \(K_D < 1.5 \), то рассчитываются параметры только на верхней частоте \((f_B = 180 \text{ МГц}) \).

Порядок предварительного расчета

1. Определяется коэффициент
\[
\gamma_S = \frac{f_B}{f_S} = \frac{180 \cdot 10^6}{1347 \cdot 10^6} = 0.137.
\]

Так как \(\gamma_S < 0.3 \), то расчет параметров можно вести по упрощенным формулам.

2. По выходным характеристикам рассчитывается низкочастотное значение выходной проводимости
\[
g_{KB} = \frac{\Delta I_K}{\Delta U_{KE}},
\]
где \(\Delta I_K \) и \(\Delta U_{KE} \) — приращения тока и напряжения вблизи рабочей области. Так как для тока \(I_{K0} = 1 \text{ мА} \) данный расчет выполнить невозможно, то берутся приращения тока и напряжения около точки \(I_K = 10 \text{ мА}, U_{KE} = 5 \text{ В} \).

\[
g_{KE(10)} = \frac{\Delta I_K}{\Delta U_{KE}} = \frac{1.5 \cdot 10^{-3}}{6} = 0.25 \cdot 10^{-3} \text{См}.
\]

3. Находится значение \(g_{KE} \) при токе \(I_{K0} = 1 \text{ мА} \)

\[
g_{KE} = g_{KE(10)} \cdot \frac{I_{K0}}{I_K} = 0.25 \cdot 10^{-3} \frac{1 \cdot 10^{-3}}{10 \cdot 10^{-3}} = 0.25 \cdot 10^{-4} \text{См}.
\]

4. Определяется значение общего сопротивления базы

\[
r_B = \gamma \cdot \frac{r_{K}}{C_K} = 2 \cdot \frac{15 \cdot 10^{-12}}{1.7 \cdot 10^{-12}} = 17.65 \text{Ом}.
\]

5. Рассчитывается входное сопротивление транзистора в схеме с общей базой (ОБ)

\[
h_{11B} = r_E + \frac{r_B}{h_{21E}} = \frac{26}{I_E} + \frac{r_B}{h_{21E}} = \frac{26 + 17.65}{50} = 26.35 \text{Ом}.
\]

6. Находится коэффициент прямой передачи тока в схеме с ОБ

\[
h_{21B} = \frac{h_{21E}}{1 + h_{21E}} = \frac{50}{51} = 0.98.
\]
Таблица 3.3

Транзистор ЗПЗ21 (схема с ОИ, $I_C = 8$ мА, $U_C = 2,5$ В)

<table>
<thead>
<tr>
<th>f, ГГц</th>
<th>2,0</th>
<th>2,6</th>
<th>3,2</th>
<th>3,8</th>
<th>4,1</th>
<th>4,4</th>
<th>5,0</th>
<th>5,6</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_{11}</td>
<td>$</td>
<td>S_{11}</td>
<td>$</td>
<td>0,935</td>
<td>0,894</td>
<td>0,845</td>
<td>0,790</td>
<td>0,761</td>
</tr>
<tr>
<td></td>
<td>φ_{11}°</td>
<td>-32,0</td>
<td>-41,6</td>
<td>-51,2</td>
<td>-60,8</td>
<td>-65,7</td>
<td>-70,5</td>
<td>-80,3</td>
</tr>
<tr>
<td>S_{12}</td>
<td>$</td>
<td>S_{12}</td>
<td>$</td>
<td>0,036</td>
<td>0,043</td>
<td>0,047</td>
<td>0,048</td>
<td>0,048</td>
</tr>
<tr>
<td></td>
<td>φ_{12}°</td>
<td>69,5</td>
<td>64,9</td>
<td>61,7</td>
<td>60,7</td>
<td>61,4</td>
<td>63,2</td>
<td>69,9</td>
</tr>
<tr>
<td>S_{21}</td>
<td>$</td>
<td>S_{21}</td>
<td>$</td>
<td>1,655</td>
<td>1,635</td>
<td>1,611</td>
<td>1,583</td>
<td>1,568</td>
</tr>
<tr>
<td></td>
<td>φ_{21}°</td>
<td>146,6</td>
<td>136,8</td>
<td>127,2</td>
<td>117,8</td>
<td>113,2</td>
<td>108,7</td>
<td>99,9</td>
</tr>
<tr>
<td>S_{22}</td>
<td>$</td>
<td>S_{22}</td>
<td>$</td>
<td>0,845</td>
<td>0,829</td>
<td>0,811</td>
<td>0,790</td>
<td>0,780</td>
</tr>
<tr>
<td></td>
<td>φ_{22}°</td>
<td>-18,9</td>
<td>-24,5</td>
<td>-30,0</td>
<td>-36,5</td>
<td>-38,2</td>
<td>-41,0</td>
<td>-46,6</td>
</tr>
<tr>
<td>K_y</td>
<td></td>
<td>0,373</td>
<td>0,516</td>
<td>0,691</td>
<td>0,908</td>
<td>1,035</td>
<td>1,172</td>
<td>1,452</td>
</tr>
<tr>
<td>$\Gamma_{ГОПТ}$</td>
<td>$</td>
<td>\Gamma_{ГОПТ}</td>
<td>$</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0,937</td>
</tr>
<tr>
<td></td>
<td>$\varphi_{ГОПТ}^\circ$</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>76,5</td>
<td>80,7</td>
<td>89,0</td>
</tr>
<tr>
<td>$\Gamma_{НОПТ}$</td>
<td>$</td>
<td>\Gamma_{НОПТ}</td>
<td>$</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0,943</td>
</tr>
<tr>
<td></td>
<td>$\varphi_{НОПТ}^\circ$</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>47,9</td>
<td>49,2</td>
<td>52,5</td>
</tr>
<tr>
<td>η_0</td>
<td></td>
<td>3,36</td>
<td>3,35</td>
<td>3,34</td>
<td>3,34</td>
<td>3,34</td>
<td>3,35</td>
<td>3,38</td>
</tr>
<tr>
<td>η_{MIN}</td>
<td></td>
<td>1,30</td>
<td>1,42</td>
<td>1,55</td>
<td>1,69</td>
<td>1,77</td>
<td>1,85</td>
<td>2,02</td>
</tr>
<tr>
<td>$\Gamma_{ГШОПТ}$</td>
<td>$</td>
<td>\Gamma_{ГШОПТ}</td>
<td>$</td>
<td>0,901</td>
<td>0,868</td>
<td>0,832</td>
<td>0,794</td>
<td>0,774</td>
</tr>
<tr>
<td></td>
<td>$\varphi_{ГШОПТ}^\circ$</td>
<td>28,7</td>
<td>37,8</td>
<td>47,3</td>
<td>57,2</td>
<td>62,4</td>
<td>67,7</td>
<td>78,9</td>
</tr>
</tbody>
</table>
Продолжение табл. 3.3

<table>
<thead>
<tr>
<th>f, ГГц</th>
<th>0,6</th>
<th>1,1</th>
<th>1,6</th>
<th>2,1</th>
<th>2,6</th>
<th>3,1</th>
<th>3,5</th>
<th>4,6</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_{11}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$</td>
<td>S_{11}</td>
<td>$</td>
<td>0,377</td>
<td>0,240</td>
<td>0,216</td>
<td>0,241</td>
<td>0,285</td>
<td>0,334</td>
</tr>
<tr>
<td>ϕ_{11}</td>
<td>-90,7</td>
<td>-139,0</td>
<td>179,6</td>
<td>149,6</td>
<td>129,7</td>
<td>115,5</td>
<td>106,7</td>
<td>88,2</td>
</tr>
<tr>
<td>S_{12}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$</td>
<td>S_{12}</td>
<td>$</td>
<td>0,040</td>
<td>0,057</td>
<td>0,076</td>
<td>0,097</td>
<td>0,120</td>
<td>0,146</td>
</tr>
<tr>
<td>ϕ_{12}</td>
<td>58,8</td>
<td>59,5</td>
<td>61,5</td>
<td>62,0</td>
<td>60,9</td>
<td>58,4</td>
<td>55,6</td>
<td>44,5</td>
</tr>
<tr>
<td>S_{21}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$</td>
<td>S_{21}</td>
<td>$</td>
<td>7,149</td>
<td>4,446</td>
<td>3,210</td>
<td>2,532</td>
<td>2,112</td>
<td>1,827</td>
</tr>
<tr>
<td>ϕ_{21}</td>
<td>110,4</td>
<td>86,0</td>
<td>69,4</td>
<td>55,7</td>
<td>43,4</td>
<td>31,8</td>
<td>22,8</td>
<td>-1,0</td>
</tr>
<tr>
<td>S_{22}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$</td>
<td>S_{22}</td>
<td>$</td>
<td>0,756</td>
<td>0,675</td>
<td>0,643</td>
<td>0,623</td>
<td>0,606</td>
<td>0,588</td>
</tr>
<tr>
<td>ϕ_{22}</td>
<td>-21,3</td>
<td>-26,0</td>
<td>-31,6</td>
<td>-38,7</td>
<td>-47,2</td>
<td>-57,2</td>
<td>-66,3</td>
<td>-97,9</td>
</tr>
<tr>
<td>K_Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Gamma_{ГОПТ}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$</td>
<td>\Gamma_{ГОПТ}</td>
<td>$</td>
<td>–</td>
<td>0,804</td>
<td>0,634</td>
<td>0,639</td>
<td>0,690</td>
<td>0,777</td>
</tr>
<tr>
<td>$\phi_{ГОПТ}$</td>
<td>–</td>
<td>-167,4</td>
<td>-170,1</td>
<td>-153,1</td>
<td>-139,7</td>
<td>-128,8</td>
<td>121,3</td>
<td>–</td>
</tr>
<tr>
<td>$\Gamma_{НОПТ}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$</td>
<td>\Gamma_{НОПТ}</td>
<td>$</td>
<td>–</td>
<td>0,915</td>
<td>0,821</td>
<td>0,808</td>
<td>0,820</td>
<td>0,858</td>
</tr>
<tr>
<td>$\phi_{НОПТ}$</td>
<td>–</td>
<td>29,9</td>
<td>32,9</td>
<td>38,1</td>
<td>44,7</td>
<td>52,7</td>
<td>59,9</td>
<td>–</td>
</tr>
<tr>
<td>Π_0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Π_{MIN}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Gamma_{гШОПТ}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$</td>
<td>\Gamma_{гШОПТ}</td>
<td>$</td>
<td>0,346</td>
<td>0,273</td>
<td>0,174</td>
<td>0,063</td>
<td>0,051</td>
<td>0,159</td>
</tr>
<tr>
<td>$\phi_{гШОПТ}$</td>
<td>15,0</td>
<td>27,6</td>
<td>40,4</td>
<td>56,1</td>
<td>-127,4</td>
<td>-111,6</td>
<td>-103,1</td>
<td>-84,0</td>
</tr>
</tbody>
</table>
Расчет ВЧ параметров транзистора по схеме с общей базой

1. Активная составляющая проводимости $g_{11Б}$

$$g_{11Б} = \frac{1}{h_{11Б}} = \frac{1}{26,35} = 3,795 \cdot 10^{-2} \text{См}.$$

2. Ёмкость

$$C_{11Б} = -\frac{1}{\cos(h_{11Б})} \left(1 - \frac{h_{11Б}}{r_В}\right) = 2,21 \cdot 10^{-12} \Phi.$$

3. Активная составляющая прямой передачи

$$g_{21Б} = -\frac{h_{21Б}}{h_{11Б}} = -\frac{-0,98 \cdot 0,134}{26,35} = -3,72 \cdot 10^{-2} \text{См}.$$

4. Реактивная составляющая проводимости прямой передачи

$$b_{21Б} = \frac{h_{21Б}}{h_{11Б}} \cdot g_γ = \frac{0,98 \cdot 0,134}{26,35} = 4,98 \cdot 10^{-3} \text{См}.$$

5. Модуль проводимости прямой передачи (крутизна)

$$|g_{21Б}| = \sqrt{g_{21Б}^2 + b_{21Б}^2} = \sqrt{\left(3,72 \cdot 10^{-2}\right)^2 + \left(4,98 \cdot 10^{-3}\right)^2} = 3,75 \cdot 10^{-2} \text{А/В}.$$

6. Активная составляющая проводимости обратной связи

$$g_{12Б} = \gamma_γ \frac{ωτ_К}{h_{11Б}} \left(\frac{h_{11Б}}{r_В} - 1\right) = 42,5 \cdot 10^{-6} \text{См}.$$

7. Величина ёмкости обратной связи

$$C_{12Б} = -\frac{τ_К}{h_{11Б}} = -\frac{15 \cdot 10^{-2}}{26,35} = -5,69 \cdot 10^{-13} \Phi.$$

8. Модуль проводимости обратной связи

$$|g_{12Б}| = \sqrt{g_{12Б}^2 + g_{12Б}^2} = 64,46 \cdot 10^{-5} \text{См}.$$

Здесь $b_{21Б} = 2πf_К C_{12Б}.$

9. Величина активной составляющей проводимости $g_{22Б}$

$$g_{22Б} = g_{KБ} + \frac{2πτ_К}{h_{11Б}} g_γ = 1,11 \cdot 10^{-4} \text{См}.$$

10. Значение ёмкости $C_{22Б}$

$$C_{22Б} = C_К + \frac{τ_К}{h_{11Б}} (1 - g_γ^2) = 2,26 \cdot 10^{-12} \Phi.$$
Расчет ВЧ параметров транзистора в схеме с общим эмиттером

1. Значение активной составляющей проводимости $g_{11\bar{E}}$

$$g_{11\bar{E}} = \frac{1}{h_{11\bar{E}} \cdot h_{21\bar{E}}} = \frac{1}{26,35 \cdot 50} = 7,59 \cdot 10^{-4} \text{См}.$$

2. Величина емкости

$$C_{11\bar{E}} = \frac{1}{2\pi f_r r_B^2} \left(1 - \frac{r_B}{h_{21\bar{E}} \cdot h_{11\bar{E}}} \right) = 6,6 \cdot 10^{-12} \text{Ф}.$$

3. Значение активной составляющей проводимости прямой передачи

$$g_{21\bar{E}} = \frac{h_{21\bar{E}}}{h_{11\bar{E}}} = \frac{0,98}{26,35} = 3,72 \cdot 10^{-2} \text{См}.$$

4. Реактивная составляющая проводимости прямой передачи

$$b_{21\bar{E}} = -\frac{h_{21\bar{E}}}{h_{11\bar{E}}} \gamma_s = 4,98 \cdot 10^{-3} \text{См}.$$

5. Модуль проводимости прямой передачи (крутизна)

$$|g_{12\bar{E}}| = \sqrt{g_{12}\bar{E}^2 + b_{12}\bar{E}^2} = 64,46 \cdot 10^{-5} \text{См}.$$

6. Активная составляющая проводимости обратной связи

$$g_{12}\bar{E} = -\gamma_s \frac{2\pi \tau_k}{r_B^2} \left(1 - \frac{2\pi \tau_k}{h_{21\bar{E}} \cdot h_{11\bar{E}}} \right) = -1,287 \cdot 10^{-4} \text{См}.$$

7. Емкость обратной связи

$$C_{12}\bar{E} = \tau_k \frac{h_{11\bar{E}}}{h_{21\bar{E}}} - C_k = -1,59 \cdot 10^{-12} \text{Ф}.$$

8. Модуль проводимости обратной связи

$$|g_{12\bar{E}}| = \sqrt{g_{12}\bar{E}^2 + b_{12}\bar{E}^2} = 1,8 \cdot 10^{-3} \text{См},$$

где $b_{12\bar{E}} = \omega \cdot C_{12}\bar{E} = -1,8 \cdot 10^{-3} \text{См}.$

9. Активная составляющая проводимости y_{22} и емкость C_{22} в схеме с ОЭ имеет такие же значения, как и в схеме с ОБ: $g_{22\bar{E}} = 1,11 \cdot 10^{-4} \text{См}; C_{22\bar{E}} = 2,26 \text{пФ}.$

Расчет ВЧ параметров полевого транзистора в схеме с общим истоком

Исходные данные.

Диапазон частот $f = (170-180) \text{МГц}.$

Транзистор 2П341Б. Параметры транзистора при напряжении $U_{\text{СН}} = 5 \text{В}$ из справочника: $S_{\text{СН}} = 18 \text{мА/В}$ при $U_{3\bar{H}} = 0; C_{12\bar{H}} = 1 \text{пФ при } U_{3\bar{H}} = 2 \text{В;} C_{11\bar{H}} = 5 \text{пФ при } I_C = 5 \text{мА;} C_{22\bar{H}} = 1,6 \text{пФ при } U_{3\bar{H}} = 2 \text{В}.$

Необходимо найти высокочастотные параметры транзистора по схеме с общим истоком (ОИ): $g_{11\bar{H}}, C_{11\bar{H}}, g_{21\bar{H}}, b_{21\bar{H}}, g_{12\bar{H}}, C_{12\bar{H}}, g_{22\bar{H}}, C_{22\bar{H}}.$
Параметры рассчитываются на верхней частоте диапазона \(f_B = 180 \text{ МГц} \), так как коэффициент перекрытия диапазона \(K_D < 1,5 \).

Порядок предварительного расчета

По типовой передаточной характеристике транзистора 2П341Б (рис. 3.12), приведенной для \(U_{СИ} = 5 \text{ В} \), выбирается точка покоя \(U_{ЗИ0} \). С целью уменьшения нелинейных искажений \(U_{ЗИ0} \) выбирается равным половине напряжения отсечки \(U_{ОТС} = 1,04 \text{ В} \); \(U_{ЗИ} = 0,5 \cdot U_{ОТС} = 0,5 \cdot 1,04 = 0,52 \text{ В} \), а ток \(I_{C0} = 6 \text{ мА} \).

Использование выходной характеристики (рис. 3.13) позволяет при \(U_{ЗИ} = 0,6 \text{ В} \) найти выходное сопротивление на низкой частоте

\[
R_{CH} = \frac{\Delta U_{CH}}{\Delta I_C} = \frac{5,1}{3,9 \cdot 10^{-3}} = 1,31 \text{ кОм}.
\]

Рис. 3.12. Передаточная характеристика транзистора 2П341Б

Рис. 3.13. Выходная характеристика транзистор 2П341Б
По зависимости \(S(U_{3H}) \), показанной на рис. 3.14, определяется сопротивление
\[
R_{CIU} = \frac{1}{S_{\text{max}}} - \frac{1}{S'_{\text{max}}} = \frac{1}{26 \cdot 10^{-3}} - \frac{1}{33 \cdot 10^{-3}} = 8,15 \ \text{Ом}.
\]

Рис. 3.14. Характеристика \(S(U_{3H}) \) транзистора 2П341Б

Расчет ВЧ параметров полевых транзисторов в схеме с ОИ

1. Уточняется значение частоты \(f_{\text{ГЕН}} \) для выбранного режима
\[
f_{\text{ГЕН}} = \frac{S}{2\pi C_{3c}} = \frac{9 \cdot 10^{-3}}{6,28 \cdot 10^{-3}} = 1433 \ \text{МГц},
\]
где \(S = S_{\text{спр}} \left(1 - \frac{U_{3H0}}{U_{\text{спр}}} \right) = 18(1 - 0,5) = 9 \ \text{мА/В} \), \(C_{3c} = C_{12H} = 1 \ \text{пФ} \).

2. Определяется значение частоты \(f_s \)
\[
f_s = \frac{1}{2\pi C_{3H} r_H} = \frac{1}{6,28 \cdot 4 \cdot 10^{-12} \cdot 8,15} = 4885 \ \text{МГц},
\]
где \(C_{3H} = C_{11H} - C_{12H} = 5 - 1 = 4 \ \text{пФ} \).

3. Рассчитывается
\[
\gamma_s = \frac{f_{\text{раб}}}{f_s} = \frac{180 \cdot 10^6}{4885 \cdot 10^6} = 0,0368.
\]
Так как \(\gamma_s < 0,3 \), то ВЧ параметры рассчитываются по приближенным формулам на максимальной частоте диапазона.

4. Находится активная составляющая
\[
g_{11H} = \frac{\gamma_s^2}{r_H} = \frac{(3,68 \cdot 10^{-2})^2}{8,15} = 1,66 \cdot 10^{-4} \text{См}.
\]
и реактивная составляющая входной проводимости

\[b_{11H} = 2\pi f \left(C_{3H} + C_{3c} \right) = 5,652 \cdot 10^{-3} \text{См} \]

5. Определяется реактивная составляющая проводимости обратной связи

\[b_{12H} = -2\pi f C_{3c} = 1,13 \cdot 10^{-3} \text{См} \]

Активная составляющая проводимости обратной связи \(g_{12H} = 0 \).

6. Рассчитывается реактивная составляющая проводимости прямой передачи

\[b_{21H} = -2\pi f C_{3c} = 1,13 \cdot 10^{-3} \text{См} \]

и активная составляющая проводимости прямой передачи

\[g_{21H} = S = 9 \text{ мА/В} \]

7. Определяются активная и реактивная составляющие выходной проводимости

\[g_{22H} = \frac{1}{R_{CH}} = \frac{1}{1,31 \cdot 10^{-3}} = 0,763 \cdot 10^{-3} \text{См} \]

\[b_{22H} = 2\pi f C_{22H} = 1,81 \cdot 10^{-3} \text{См} \]

Расчет ВЧ параметров каскодной схемы общий исток – общая база

Необходимо рассчитать высокочастотные параметры каскодной схемы ОИ ОБ (рис. 3.15) на частоте \(f = 180 \text{ МГц} \). Исходными данными для расчета ВЧ параметров каскодной схемы являются ВЧ параметры транзисторов 2П341Б в схеме с общим истоком и КТ368 в схеме с общей базой, найденные в предыдущих примерах.

Параметры транзистора в схеме с ОИ:

\[g_{11H}^* = 1,66 \cdot 10^{-4} \text{См}; \quad b_{11H}^* = 5,65 \cdot 10^{-3} \text{См}; \quad C_{11H}^* = 5 \text{ пФ}; \]

\[g_{22H}^* = 0,763 \cdot 10^{-3} \text{См}; \quad b_{22H}^* = 1,81 \cdot 10^{-3} \text{См}; \quad C_{22H}^* = 1,6 \text{ пФ}; \]

\[g_{12H} = 0; \quad b_{12H} = 1,13 \cdot 10^{-3} \text{См}; \quad C_{12H}^* = 1 \text{ пФ}; \]

\[g_{21H} = 9 \cdot 10^{-3} \text{А/В}; \quad b_{21H} = 1,13 \cdot 10^{-3} \text{См}; \]

\[y_{11H} = 1,66 \cdot 10^{-4} + j \cdot 5,65 \cdot 10^{-3}; \quad y_{12H} = 0 + j \cdot 1,13 \cdot 10^{-3}; \]

\[y_{21H} = 9 \cdot 10^{-3} + j \cdot 1,13 \cdot 10^{-3}; \quad y_{22H} = 0,763 \cdot 10^{-3} + j \cdot 1,81 \cdot 10^{-3}. \]

Параметры транзистора в схеме с ОИ:

\[g_{11B} = 3,8 \cdot 10^{-2} \text{См}; \quad b_{11B}^* = 2,5 \cdot 10^{-3} \text{См}; \quad C_{11B}^* = 2,21 \text{ пФ}; \]

\[g_{22B} = 1,11 \cdot 10^{-3} \text{См}; \quad b_{22B}^* = 2,56 \cdot 10^{-3} \text{См}; \quad C_{22B}^* = 2,26 \text{ пФ}; \]

\[g_{12B} = 42,5 \cdot 10^{-6} \text{См}; \quad b_{12B}^* = -0,644 \cdot 10^{-3} \text{См}; \quad C_{12B}^* = -0,57 \text{ пФ}; \]

\[g_{21B} = -3,72 \cdot 10^{-2} \text{См}; \quad b_{21B}^* = 4,98 \cdot 10^{-3} \text{См}; \]

\[y_{11B} = 3,8 \cdot 10^{-2} + j \cdot 2,5 \cdot 10^{-3}; \quad y_{12B} = 42,5 \cdot 10^{-6} + j \cdot (-0,644 \cdot 10^{-3}); \]

\[y_{21B} = -3,7 \cdot 10^{-2} + j \cdot 4,98 \cdot 10^{-3}; \quad y_{22B} = 1,11 \cdot 10^{-4} + j \cdot 2,56 \cdot 10^{-3}. \]

Комплексные параметры эквивалентного каскодного усилителя:

\[y_{11}^* = y_{11H} - (y_{12H} \cdot y_{21H}) / (y_{22H} + y_{11B}); \]

\[y_{12}^* = -(y_{12H} \cdot y_{12B}) / (y_{22H} + y_{11B}); \]

86
\[y_{212} = -\left(y'_{21H} \cdot y''_{21b} \right) / \left(y''_{22H} + y''_{11b} \right) \]
\[y_{222} = y'_{22b} - \left(y'_{12b} \cdot y''_{21b} \right) / \left(y''_{22H} + y''_{11b} \right) \]

Рис. 3.15. Каскодная схема ОИ-ОБ

Порядок расчета

1. Определяется
\[y'_{22H} + y'_{11b} = 38,763 \cdot 10^{-3} + j \cdot 4,31 \cdot 10^{-3} \]

2. Рассчитывается значения входной проводимости \(y_{112} \), ее активной и реактивной составляющих, входной емкости
\[y'_{12H} \cdot y'_{21H} = -1,28 \cdot 10^{-6} + j \cdot 10,17 \cdot 10^{-6} ; \quad \frac{y'_{12H} \cdot y'_{21H}}{y'_{22H} \cdot y'_{11b}} = -3,83 \cdot 10^{-6} + j \cdot 0,263 \cdot 10^{-3} ; \]
\[y_{112} = y'_{11H} - \frac{y'_{12H} \cdot y'_{21H}}{y'_{22H} \cdot y'_{11b}} = 169,8 \cdot 10^{-6} + j \cdot 5,387 \cdot 10^{-3} ; \]
\[g_{112} = 169,8 \cdot 10^{-6} \text{См} ; \quad b_{112} = 5,387 \cdot 10^{-3} \text{См} ; \quad C_{112} = \frac{b_{112}}{2 \pi f} = \frac{5,387 \cdot 10^{-3}}{6,28 \cdot 180 \cdot 10^{-6}} = 4,77 \text{пФ} . \]

3. Определяются проводимость обратной связи каскодной схемы \(y_{122} \), ее активная и реактивная составляющие
\[y_{122} = -\left(y'_{12H} \cdot y''_{12b} \right) / y'_{22H} \cdot y''_{11b} ; \quad y'_{12H} \cdot y''_{12b} = 0,727 \cdot 10^{-6} + j \cdot 48,03 \cdot 10^{-9} ; \]
\[y_{122} = -1,86 \cdot 10^{-5} + j \cdot 0,833 \cdot 10^{-6} ; \quad g_{122} = -1,86 \cdot 10^{-5} \text{См} ; \quad b_{122} = 0,833 \cdot 10^{-6} ; \]
\[C_{122} = \frac{b_{122}}{2 \pi f} = \frac{0,833 \cdot 10^{-6}}{6,28 \cdot 180 \cdot 10^{-6}} = 7,34 \cdot 10^{-4} \text{пФ} . \]
\[|y_{122}| = \sqrt{\left(1,86 \cdot 10^{-5}\right)^2 + \left(0,833 \cdot 10^{-6}\right)^2} = 1,86 \cdot 10^{-5} \text{См} . \]

4. Рассчитывается проводимость прямой передачи (крутизна) каскодной схемы, ее активная и реактивная составляющие
\[y_{212} = -\left(y'_{21H} \cdot y''_{21b} \right) / y'_{22H} \cdot y''_{11b} ; \quad y'_{21H} \cdot y''_{21b} = -34,043 \cdot 10^{-5} + j \cdot 2,82 \cdot 10^{-6} ; \]
\[y_{21\Sigma} = 0.867 \cdot 10^{-2} - j \cdot 0.103 \cdot 10^{-2}; \quad g_{21\Sigma} = 0.867 \cdot 10^{-2} \text{См}; \quad b_{21\Sigma} = -0.103 \cdot 10^{-2} \text{См}; \]

\[|y_{21\Sigma}| = \sqrt{(0.867 \cdot 10^{-2})^2 + (0.103 \cdot 10^{-2})^2} = 0.867 \text{мА/В}. \]

5. Находится выходная проводимость каскодной схемы, ее активная и реактивная составляющие, выходная емкость

\[y_{22\Sigma} = y_{22\Sigma} - \frac{y_{12\Sigma} \cdot y_{21\Sigma}}{y_{22\Sigma} \cdot y_{11\Sigma}}; \quad y_{12\Sigma} \cdot y_{21\Sigma} = 1.62 \cdot 10^{-6} + j \cdot 24.212 \cdot 10^{-6}; \]

\[\frac{y_{12\Sigma}}{y_{22\Sigma} \cdot y_{11\Sigma}} = 0.109 \cdot 10^{-3} + j \cdot 0.612 \cdot 10^{-3}; \quad y_{22\Sigma} = 2 \cdot 10^{-6} - j \cdot 1.948 \cdot 10^{-3}; \]

\[g_{22\Sigma} = 2 \cdot 10^{-6} \text{См}; \quad b_{22\Sigma} = 1.948 \cdot 10^{-3} \text{См}; \quad C_{22\Sigma} = \frac{b_{22\Sigma}}{2\pi f} = \frac{1.948 \cdot 10^{-3}}{6.28 \cdot 180 \cdot 10^{-6}} = 1.72 \text{пФ}. \]

В результате получены следующие эквивалентные параметры каскодной схемы:

\[g_{11\Sigma} = 169.8 \cdot 10^{-6} \text{См}; \quad b_{11\Sigma} = 5.387 \cdot 10^{-3} \text{См}; \quad C_{22\Sigma} = 4.77 \text{пФ}; \]

\[g_{12\Sigma} = -1.86 \cdot 10^{-5} \text{См}; \quad b_{12\Sigma} = 0.833 \cdot 10^{-6} \text{См}; \quad g_{21\Sigma} = 0.867 \cdot 10^{-2} \text{мА/В}; \]

\[b_{21\Sigma} = -0.103 \cdot 10^{-2} \text{См}; \quad g_{22\Sigma} = 2 \cdot 10^{-6} \text{См}; \quad b_{22\Sigma} = 1.948 \cdot 10^{-3} \text{См}; \]

\[C_{22\Sigma} = 1.72 \text{пФ}; \quad |y_{12\Sigma}| = 1.86 \cdot 10^{-5} \text{См}; \quad |y_{21\Sigma}| = 8.73 \text{мА/В}. \]

Анализ эквивалентных параметров каскодной схемы и параметров полевого транзистора в схеме с ОИ показывает, что входная проводимость и крутизна характеристики прямой передачи практически не изменились. Но заметно уменьшилась выходная проводимость и существенно уменьшилась проводимость обратной связи в каскодной схеме.

Расчет одноконтурного каскодного усилителя радиочастоты

по схеме общий исток – общая база

Исходные данные

Диапазон частот \(f = (170...180) \) МГц; параметры контура: \(L_K = 0.05 \) мкГн; \(Q_3 = 50; \quad Q_K = 150. \) Избирательность УЧЧ по первому зеркальному каналу \(\sigma_{3K} = 26 \) дБ; первая промежуточная частота \(f_{IP1} = 25 \) МГц. Параметры активного элемента \(|y_{21}| = 8.73 \text{мА/В}; \quad |y_{12}| = 1.86 \text{См}; \quad g_{22} = 2 \cdot 10^{-6} \text{См}. \) Коэффициент трансформации во входной цепи \(n_1 = 0.84. \) Нагрузка \(g_{BХСЛ} = 1.7 \cdot 10^{-4} \text{См}. \)

Порядок расчета

1. Из условия устойчивости рассчитываем коэффициент трансформации

\[m_2 = \frac{0.45}{n_1 R_3 \cdot b \sqrt{|y_{21}| |y_{12}|}} = \frac{0.45}{0.84 \cdot 2.85 \cdot 10^3 \sqrt{8.73 \cdot 10^{-3} \cdot 1.86 \cdot 10^{-5}}} = 0.46, \]

88
где

\[R_{3,\text{В}} = \rho_b Q_3 = 56,5 \cdot 50 = 2,85 \text{kОм}, \quad \rho_b = 2\pi f_b L_k = 56,5 \text{ Ом}. \]

2. Коэффициент трансформации со стороны входа следующего каскада

\[n_2 = \sqrt{\frac{(D-1) g_{K,\text{B}}}{g_{W,\text{C.L}}}} = \sqrt{\frac{(3-1)}{8,5 \cdot 10^3 \cdot 1,7 \cdot 10^{-4}}} = 1,18, \]

где

\[D = \frac{Q_k}{Q_3} = \frac{150}{50} = 3, \quad g_{K,\text{B}} = \frac{1}{R_{K,\text{B}}}, \quad R_{K,\text{B}} = \rho_b Q_k = 56,5 \cdot 150 = 8,5\text{kОм}. \]

Так как \(n_2 > 1 \), то принимаем \(n_2 = 1 \) и \(Q_{3,\text{B}} = 1/d_{3,\text{B}} \)

\[d_{3,\text{B}} \approx d_k + \rho_b g_{W,\text{C.L}} = \frac{1}{150} + 56,5 + 1,7 \cdot 10^{-4} \approx 1,6 \cdot 10^{-2}; \quad Q_{3,\text{B}} = \frac{1}{1,6 \cdot 10^{-2}} = 62,5. \]

3. Избирательность УРЧ по первому зеркальному каналу на верхней частоте диапазона

\[\sigma_{3,\text{УРЧ}} = \sqrt{1 + Q_{3,\text{B}}^2 \left(\frac{f_B + 2f_{\text{пр}}}{f_B} - \frac{f_B}{f_B + 2f_{\text{пр}}} \right)^2} = 31,25; \]

\[\sigma_{3,\text{УРЧ}} = 20 \cdot \log(31,25) = 30 \text{ дБ}. \]

4. Эквивалентное затухание на нижней частоте диапазона

\[d_{3,\text{Н}} = d_k + m_2^2 \rho_h g_{32} + n_2^2 \rho_h g_{W,\text{C.L}} = 15,7 \cdot 10^{-3}; \]

\[Q_{3,\text{Н}} = \frac{1}{d_{3,\text{Н}}} = 64; \quad d_k = \frac{1}{Q_k} = \frac{1}{150} = 6,67 \cdot 10^{-3}; \]

\[\rho_h = 2\pi f_h L_k = 2\pi \cdot 170 \cdot 10^6 \cdot 5 \cdot 10^{-8} = 53 \text{ Ом}. \]

5. Резонансный коэффициент усиления УРЧ на нижней и верхней частоте диапазона

\[K_{0,\text{НУРЧ}} = m_2 n_2 R_{3,\text{Н}} \left| y_{21} \right| = 0,46 \cdot 3,4 \cdot 10^3 \cdot 8,73 \cdot 10^{-3} = 13,6; \]

\[K_{0,\text{ВУРЧ}} = m_2 n_2 R_{3,\text{В}} \left| y_{21} \right| = 0,46 \cdot 3,48 \cdot 10^3 \cdot 8,73 \cdot 10^{-3} = 13,9, \]

где

\[R_{3,\text{Н}} = \rho_h Q_{3,\text{Н}} = 53 \cdot 64 = 3,4 \text{kОм}; \]

\[R_{3,\text{В}} = \rho_b Q_{3,\text{В}} = 56,5 \cdot 62,5 = 3,48 \text{kОм}. \]

Если на входе резонансного усилителя применяется одиночный колебательный контур, имеющий, например, резонансный коэффициент передачи на нижней и верхней частоте соответственно \(K_{0,\text{НВЦ}} = 3,6; \quad K_{0,\text{ВВЦ}} = 3,62 \), то общий коэффициент передачи ВЦ и УРЧ на нижней и верхней частоте диапазона будет равен:

\[K_{0,\text{НС}} = K_{0,\text{НВЦ}} \cdot K_{0,\text{НУРЧ}} = 3,6 \cdot 13,6 = 49; \]

\[K_{0,\text{ВС}} = K_{0,\text{ВВЦ}} \cdot K_{0,\text{ВУРЧ}} = 3,62 \cdot 13,9 = 50,5. \]
Контрольные вопросы

1. Перечислить условия получения максимума резонансного коэффициента усиления в резонансном усилителе.
2. Как влияет обратная связь (ОС) на свойства резонансных усилителей?
3. Определить условия устойчивой работы резонансного усилителя.
4. Указать способы повышения устойчивости РУ.
5. От чего зависит коэффициент шума резонансного усилителя с входной цепью?
6. Объяснить зависимость резонансного коэффициента усиления от частоты в различных схемах РУ (автотрансформаторная связь, трансформаторная связь).
7. Перечислить принципы построения УПЧ с распределенной и с сосредоточенной избирательностью. Достоинства и недостатки.
8. Что является причиной нестабильности показателей резонансных усилителей?
4 УСИЛИТЕЛИ НА ТУННЕЛЬНЫХ ДИОДАХ И ПОЛУПРОВОДНИКОВЫЕ ПАРАМЕТРИЧЕСКИЕ УСИЛИТЕЛИ

4.1 Регенеративные усилители на туннельных диодах

Эквивалентная схема УРЧ на туннельном диоде показана на рис. 4.1 а), а эквивалентная схема туннельного диода (ТД) на рис 4.1 б).

\[\omega_{kr} = \frac{g_d}{C_D} \sqrt{\frac{1}{r_D |g_d|}} - 1. \] (4.1)

Собственная резонансная частота ТД определяется из условия равенства нулю реактивной составляющей входного сопротивления диода

\[\omega_0 = \sqrt{\frac{1}{L_S C_D} - \left(\frac{g_d}{C_D} \right)^2}. \] (4.2)
Коэффициент передачи номинальной мощности резонансного усилителя на туннельном диоде определяется следующим образом:

\[K_{\text{P,НОМ}} = \left(\frac{\beta + \delta}{1 - \delta} \right)^2, \]
(4.3)

где коэффициент регенерации:

\[\delta = \frac{|g_D|}{m^2(g_f + g_K)}; \]
(4.4)

коэффициент потерь резонатора:

\[\beta = \frac{g_f - \frac{g_K}{m^2}}{g_f + \frac{g_K}{m^2}} = \frac{m^2g_f - g_K}{m^2g_f + g_K}. \]
(4.5)

Полоса пропускания избирательной системы усилителя на туннельном диоде

\[\Pi = f_0\rho g_\varphi, \]
(4.6)

где \(\rho \) – характеристическое сопротивление контура, а эквивалентная резонансная проводимость цепи:

\[g_\varphi = g_K + m^2g_f + n^2g_H - g_D. \]
(4.7)

При согласовании с источником сигнала

\[m^2g_f = g_K + n^2g_H - g_D. \]
(4.8)

Так как при согласовании

\[g_\varphi = 2g_f m^2, \]
(4.9)

то необходимый коэффициент включения на входе резонансного усилителя

\[m = \sqrt{g_\varphi/2g_f}. \]
(4.10)

Учитывая, что \(g_f m^2 = 0.5g_\varphi \), получим

\[n = \sqrt{(0.5g_\varphi + g_D)/g_H}. \]
(4.11)

При заданной полосе пропускания коэффициент усиления по мощности

\[K_P = 1 + 2\rho \frac{f_0}{\Pi} g_D. \]
(4.12)

Изменение отрицательной проводимости туннельного диода \(\delta g_D \) приводит к неустойчивой работе усилителя. Если ввести относительную нестабильность проводимости диода \(\Delta = \delta g_D/g_D \), то устойчивый коэффициент усиления по мощности определяется следующим образом:

\[K_P < \frac{2}{\Delta}. \]
(4.13)
4.2 Параметрические полупроводниковые усилители

Эквивалентная схема варакторного диода показана на рис. 4.3, где r_S – объёмное сопротивление кристалла диода; C_0 – среднее значение ёмкости в рабочей точке; $\omega(t) = C_1 \cdot \cos \omega_{fr} t$ – динамическая ёмкость диода; C_1 – амплитуда ёмкости; $C_1 = mC_0$; ω_{fr} – частота накачки; C_{II} – конструктивная ёмкость патрона диода. Входная и выходная проводимости параметрического усилителя рассчитываются по формулам:

$$g_{\text{вх}} = (\omega_c C_0)^2 r_s + \frac{\omega_c \omega_{fr} C_1^2}{4 g_2}; \quad (4.14)$$

$$g_{\text{вых}} = (\omega_{fr} C_0)^2 r_s + \frac{\omega_c \omega_{fr} C_1^2}{4 g_1}. \quad (4.15)$$

![Рис.4.3. Эквивалентная схема варакторного диода](image)

Здесь g_1 и g_2 – соответственно суммарные собственные входные и выходные проводимости усилителя. Знак «минус» в последних выражениях соответствует случаю регенеративного преобразующего усиления, а знак «плюс» – нерегенеративного преобразующего усиления. Критическая частота варакторного диода

$$\omega_{KP} = \frac{M}{2 \tau_s}, \quad (4.16)$$

где $\tau_s = r_s \cdot C_0$ – постоянная времени диода; M – глубина модуляции ёмкости.

Максимальный коэффициент передачи мощного нерегенеративного усилителя-преобразователя

$$K_{P.НOM} = \frac{\omega_{KP} \sqrt{1 + a_0} - 1}{\omega_c \sqrt{1 + a_0} + 1}. \quad (4.17)$$

зависит от коэффициента внутреннего согласования

$$a_0 = \frac{\omega_{KP}^2}{\omega_c \omega_{KP}}. \quad (4.18)$$
Задачи

4.1. Нарисовать схему питания ТД по постоянному току при условии, что в рабочей точке ток диода \(I_0 = 2 \) мА, напряжение на диоде \(U_0 = 50 \) мВ, проводимость ТД \(|g_D| = 20 \) мСм, напряжение источника питания \(E_\Pi = 6,3 \) В. Рассчитать сопротивление схемы питания.

4.2. Определить максимально возможную рабочую частоту усилителя на туннельном диоде (УТД) по известным параметрам ТД: \(|g_D| = 2,5 \) мСм, \(r_S = 1 \) Ом, \(C_D = 0,5 \) пФ.

4.3. Рассчитать коэффициент передачи мощности в режиме двухстороннего согласования УТД при следующих условиях: частота сигнала \(f_1 = 6 \) ГГц; \(m = 0,5; \ g_{I-} = 20 \) мСм; \(g_k = 10 \) мСм; параметры ТД: \(|g_d| = 2,5 \) мСм; \(r_S = 3 \) Ом, \(L_S = 0,2 \) нГн, \(C_D = 0,2 \) пФ.

4.4. Туннельный диод имеет следующие параметры: \(|g_d| = 4,4 \) мСм; \(r_S = 3 \) Ом, \(C_D = 0,44 \) пФ, \(L_S = 0,2 \) нГн. Будет ли такой диод абсолютно устойчив? Можно ли использовать данный ТД в УТД на частоте 10 ГГц? Определить вещественную часть импеданса ТД на этой частоте.

4.5. Как связаны между собой частоты \(f_C, f_H, f_{ПР} \), чтобы параметрический полупроводниковый усилитель (ППУ) на «отражение» (рис. 4.4) мог усиливать входной сигнал?

4.6. Можно ли схему, состоящую из двух контуров и параметрически возбуждаемого диода (рис. 4.5), использовать в отражательном ППУ, если частота настройки контуров и частота накачки связаны соотношением \(f_{ПР} = f_C + f_H \)?

4.7. Какой коэффициент передачи параметрического нерегенеративного усилителя-преобразователя можно получить при следующих соотношениях частот:
 а) \(f_H < f_C, f_{ПР} = f_C - f_H \)
 б) \(f_H > 2f_C, f_{ПР} = f_H - f_C \) ?

4.8. Как следует выбирать частоты настройки контуров в схеме (рис. 4.5), чтобы она могла быть использована в регенеративном проходном ППУ?
4.9. Постоянная времени варакторного диода равна $\tau_S = 5 \cdot 10^{-12}$ с, частота входного сигнала $f_C = 10$ ГГц, частота накачки $f_N = 50$ ГГц. Можно ли такой диод применить в каскаде ППУ на «отражение» при глубине модуляции емкости $M = 0,5$?

4.10. Какой должна быть глубина модуляции емкости варакторного диода, имеющего $\tau_S = 10^{12}$ с, для использования его в схеме параметрического нерегенеративного усилителя-преобразователя при условии $f_C = 10$ ГГц, $f_N = 40$ ГГц?

4.11. Максимальный коэффициент передачи номинальный мощности нерегенеративного усилителя-преобразователя равен 18. Найти необходимую критическую частоту варакторного диода, если $f_C = 0,5$ ГГц, $f_N = 9,5$ ГГц?

4.12. При согласовании с источником сигнала УТД найти полосу пропускания, если: $f_0 = 5$ ГГц, характеристическое сопротивление контура $\rho = 500$ Ом, коэффициент включения источника сигнала с $g_T = 20$ мСм равен $m = 0,5$.

4.13. Усилитель на туннельном диоде, у которого $|g_D| = 2$ мСм, согласован с источником сигнала ($m = 0,5$) и с нагрузкой $g_N = 10$ мСм. Определить полосу пропускания и коэффициент включения нагрузки в контур, если $g_T = 10$ мСм, $g_K = 10$ мСм, $f_0 = 5$ ГГц.

4.14. Найти полосу пропускания и эквивалентное затухание контура резонансного усилителя на туннельном диоде по следующим исходным данным: $|g_D| = 2,5$ мСм, $f_0 = 2$ ГГц, $\rho = 500$ Ом, $g_T = 10$ мСм, $m = 0,5$. Рассчитать резонансный коэффициент усиления по мощности.
5 ПРЕОБРАЗОВАТЕЛИ ЧАСТОТЫ

Преобразователь частоты (ПЧ) представляет собой нелинейный элемент для напряжения гетеродина и служит для преобразования принятого сигнала с частотой \(f_C \) в другой с промежуточной частотой \(f_{PR} \), более удобный для усиления и обеспечения высокой избирательности.

Преобразователь частоты состоит из смесителя, к которому подводится принимаемый сигнал, и гетеродина, напряжение которого периодически изменяет параметры смесителя. На выходе смесителя выделяется сигнал преобразованной частоты \(f_{PR} \).

Преобразование частоты происходит в супергетеродинном приёмнике без изменения закона модуляции. На рис. 5.1 а показан входной сигнал ПЧ с несущей частотой \(f_C \) и гармоническим законом модуляции с частотой \(F \). Спектр этого сигнала представлен на рис. 5.1 в. Сигнал на выходе ПЧ с меньшей несущей частотой \(f_{PR} \) имеет тот же закон модуляции рис. 5.1 б. Спектр выходного сигнала ПЧ показан на рис 5.1 г.

![Рис. 5.1. Преобразование частоты в супергетеродинном приёмнике](image-url)
В качестве нелинейных элементов в ПЧ используются транзисторы, лампы, диоды. Так в приёмниках километровых (длинных), гектометровых (средних), декаметровых (коротких) и метровых волн предпочитательнее преобразователи частоты с транзисторными и диодными (резистивными, туннельными и параметрическими) смесителями. Приёмники сантиметровых и миллиметровых волн имеют преобразователи с диодными смесителями.

Если для получения гетеродинного напряжения

\[U_r = U_m \sin \omega_r t \] \hspace{1cm} (5.1)

используется отдельный нелинейный элемент, то такой ПЧ называется преобразователем частоты с отдельным гетеродином (рис. 5.2).

Рис. 5.2. Преобразователь частоты с отдельным гетеродином

В данном случае независимость выбора режимов электронных приборов смесителя и гетеродина обеспечивает лучшие качественные характеристики ПЧ.

Преобразователь частоты, в котором применяется один и тот же нелинейный элемент и для смесителя, и для гетеродина, называется совмещенным ПЧ или автодинным (рис. 5.3).

Рис. 5.3. Преобразователь частоты с совмещенным гетеродином
При простом преобразовании частоты \(f_{\text{ПР}} = f_\Gamma - f_\text{C} \) (верхняя настройка гетеродина) и \(f_{\text{ПР}} = f_\text{C} - f_\Gamma \) (нижняя настройка гетеродина) для диапазонных приемников предпочтение отдается верхней настройке, при которой коэффициент перестройки гетеродина меньше коэффициента перестройки по диапазону принимаемых частот

\[
\frac{f_{\Gamma, \text{max}}}{f_{\Gamma, \text{min}}} = \frac{f_{\text{C, max}}}{f_{\text{C, min}}},
\]

(5.2)

Реже применяется преобразование на гармониках частоты гетеродина \(f_{\text{ПР}} = nf_\Gamma - f_\text{C} \) или \(f_{\text{ПР}} = f_\text{C} - nf_\Gamma \), которое позволяет снизить частоту гетеродина и увеличить ее стабильность. При выборе рабочей точки на криволинейном участке вольтамперной характеристики транзистора смесителя и подведении к транзистору двух переменных напряжений (гетеродина и сигнала) коллекторный ток имеет постоянную составляющую, составляющие с частотами гетеродина и сигнала, а также составляющие с разностной (например, \(f_\Gamma - f_\text{C} \)) и суммарной \(f_\Gamma + f_\text{C} \) частотами. Две последние составляющие называются комбинационными, так как их частоты определяются комбинациями (суммарной и разностной) частот входных сигналов нелинейного элемента.

При постоянной амплитуде напряжения гетеродина амплитуда проводимости прямой передачи транзистора \(Y_{21m} \) будет неизменной. Поэтому амплитуды разностной и суммарной составляющих прямо пропорциональны амплитуде сигнала.

Нагрузка преобразователя частоты выполняется избирательной и настраивается на выбранную промежуточную частоту. Поэтому на выходе преобразователя частоты будет только напряжение одной составляющей - полезной составляющей промежуточной частоты.

5.1 Основные характеристики преобразователя частоты

1. Коэффициент передачи по напряжению

\[
K_{\text{ПР}} = \frac{U_{\text{М,ПР}}}{U_{\text{М,С}}},
\]

где \(U_{\text{М,ПР}} \) – выходное напряжение преобразователя на промежуточной частоте; \(U_{\text{М,С}} \) – входное напряжение на принимаемой частоте сигнала.

2. Диапазон рабочих частот преобразователя, учитывающий не только диапазон частот принимаемых сигналов, но и диапазон изменения частот гетеродина.

3. Входная \(g_{\text{вх}} \) и выходная \(g_{\text{вых}} \) проводимости на частоте сигнала и промежуточной частоте, соответственно.
4. Избирательность ПЧ, под которой понимается зависимость амплитуды выходного напряжения ПЧ от частоты входного сигнала при неизменных амплитуде и частоте гетеродина (рис. 5.4)
5. Коэффициент шума преобразователя частоты $\mathcal{W}_{ПЧ}$.
6. Коэффициент нелинейных искажений K_Γ.
7. Ослабление побочных каналов приёма, для которых
$$f_{ПР} = mf_\Gamma - nf_С \quad \text{или} \quad f_{ПР} = nf_С - mf_\Gamma,$$
где m и n – целые числа.

Рис. 5.4. К определению избирательности ПЧ

Расчет ПЧ включает следующее: обоснование принципа построения ПЧ (с отдельным гетеродином или по автодинной схеме); выбор рабочей точки; определение коэффициента усиления (передачи); расчёт элементов связи ПЧ с входными и выходными цепями; определение амплитуды напряжения гетеродина, подводимого к смесителю.

Рабочая точка смесителя выбирается обязательно на нелинейном, желательно квадратичном, участке проходной характеристики транзистора $I_K = Y(U_{БЭ})$. На рис. 5.5 для примера показана зависимость тока коллектора I_K от напряжения между базой и эмиттером $U_{БЭ}$.

Рабочая точка и амплитуда напряжения гетеродина $U_{мГ}$ выбираются следующим образом.

1. Определяется по характеристике максимальное по абсолютной величине напряжение на базе транзистора $U_{БЭ.\ max}$, после которого начинается линейный участок зависимости $I_K = Y(U_{БЭ})$.

2. Находимся амплитуда напряжения гетеродина $U_{мГ} = 0,5U_{БЭ.\ max}$, которая определяет положение рабочей точки смесителя при соответствующем значении тока коллектора $I_{K.РТ}$.

Необходимо так выбрать $U_{БЭ.\ max}$, чтобы максимальный ток коллектора при $U_{БЭ} = U_{БЭ.\ max}$ не превышал допустимое значение.
3. После выбора рабочей точки рассчитываются параметры транзистора для данного режима (g_{11}, g_{22}, C_{11}, C_{22}). Внутренние параметры смесителя отличаются от параметров транзистора в режиме усиления. Для расчётов можно принять $g_{1ПР} \approx (0,7...0,8) \ g_{11}$, $g_{2ПР} \approx (0,6...0,8) \ g_{22}$, $C_{1ПР} \approx C_{11}$, $C_{2ПР} \approx C_{22}$, а крутизна преобразования

$$S_{ПР} = \frac{1}{4} S_{\max} = \frac{1}{2} S_{РТ},$$

где S_{\max} – крутизна характеристики транзистора при $U_{ВЭмакс}$; $S_{РТ}$ – крутизна транзистора в рабочей точке.

При высоких требованиях к РПУ по избирательности положение рабочей точки целесообразно выбирать в середине квадратичного участка вольт-амперной характеристики $I_{K} = Y(U_{БЭ})$, что соответствует середине участка зависимости крутизны от напряжения $U_{ВЭ}$.

Рабочая точка смесителя на полевом транзисторе выбирается на нелинейном участке проходной характеристики $I_{C} = Y(U_{3ил})$ таким же образом, как и для биполярного транзистора.

Коэффициент усиления преобразователя определяется так же, как и для резонансного усилителя

$$K_{ПП} = m \cdot n \cdot S_{ПП} \cdot R_{3},$$

где $S_{ПП}$ – крутизна усилительного прибора (транзистора) режиме преобразования; m и n – коэффициенты включения контура в коллекторную цепь транзи-
сторона и ко входу следующего каскада соответственно; R_3 – резонансное эквивалентное сопротивление контура смесителя на промежуточной частоте $f_{PР}$.

Для повышения коэффициента усиления преобразователя частоты следует увеличивать проводимость преобразования $Y_{21ПР}$. Этому способствует выбор рабочей точки с большим коллекторным током транзистора, что увеличивает их шунтирующее действие на избирательную систему, однако при этом возрастает входная и выходная проводимость транзистора и вызывает снижение усилительных и особенно избирательных свойств радиоприёмного устройства.

На практике рабочую точку преобразователя преобразователя частоты выбирают при токе коллектора не более 1...2 мА, что близко к оптимальным режимам транзисторов в усилительных каскадах. Поэтому обычно в преобразователях частоты используется режим по постоянному току примерно такой же, как Кombинационные «свисты» возможны в том случае, когда частота сигнала принимает определённые значения

$$f_c = f_{PР} \cdot \frac{n + 1}{|m - n|} \pm \frac{F}{|m - n|},$$

где m – номер гармоники частоты сигнала; n – номер гармоники частоты гетеродина; F – низкая частота (частота напряжения, которая может пройти через усилитель низкой частоты (УНЧ) и создать мешающий эффект); $f_{PР}$ – промежуточная частота.

в усилителях радиосигнала и в усилителях промежуточной частоты.

При кусочно-линейной аппроксимации зависимости крутизны активного прибора, используемого в смесителе, от напряжения гетеродина на управляющем электроде $U_{мГ}$ амплитуда n-й гармоники крутизны равна

$$S_n = S_{max} \cdot \alpha_n (\Theta),$$

где $\alpha_n (\Theta)$ – коэффициент разложения ряда Фурье для n-ой гармоники косинусоидального импульса; Θ – угол отсечки (рис. 5.6), равный

$$\Theta = \arccos \frac{E_0 - E_{СМ}}{U_{мГ}},$$

где $E_{СМ}$ – напряжение смещения рабочей точки.

Крутизна преобразования для n-й гармоники определяется из следующего выражения:

$$S_n (n) = \frac{S_n}{2}.$$

При кусочно-линейной аппроксимации вольтамперной характеристики (ВАХ) диода диодного смесителя крутизна преобразования по n-й гармонике колебания гетеродина равна
$S_n = \frac{S}{n\pi} \sin(n\theta)$, \hspace{1cm} (5.9)

где S – крутизна ВАХ диода.

Рис. 5.6. К определению угла отсечки

Коэффициент шума РПУ, первым каскадом которого является преобразователь частоты, определяется следующим образом:

\[III = III_с + L_д (t_д + III_{УПЧ} - 1) \] \hspace{1cm} (5.11)

или

\[III = L_д (t_д + III_{УПЧ} - 1), \] \hspace{1cm} (5.12)

где $III_с$ – коэффициент шума смесителя; $L_д$ – потери преобразования смесителя; $t_д$ – шумовое отношение смесительного диода; $III_{УПЧ}$ – коэффициент шума усилителя промежуточной частоты (УПЧ).

В современных приёмниках с переменной настройкой все колебательные контуры радиотракта и контур гетеродина настраиваются одной ручкой. Это требование вызывает необходимость сопряжения настроек сигнальных и гетеродинного колебательных контуров радиоприёмного устройства. Погрешность сопряжения настроек контуров преселектора и гетеродина не должна превышать половины полосы пропускания радиотракта.
При верхней настройке гетеродина коэффициент поддиапазона гетеродинного контура должен быть меньше, чем сигнального

\[
K_{\text{дв}} = K_{\text{дв}} \cdot \frac{f_{\text{p}}}{f_{\text{c} \text{max}}} , \quad \text{при } f_r > f_c; \quad (5.13)
\]

\[
K_{\text{дв}} = K_{\text{дв}} \cdot \frac{f_{\text{p}}}{f_{\text{c} \text{min}}} , \quad \text{при } f_r < f_c. \quad (5.14)
\]

В области коротких волн, и особенно в диапазоне УКВ, точное сопряжение осуществляют, как правило, в одной точке диапазона (реже в двух точках). В диапазоне длинных и средних волн точное сопряжение добиваются в трёх точках.

Частоты точного сопряжения \(f_1, f_2, f_3 \) рассчитываются следующим образом:

\[
f_1 = \frac{f_{\text{max}} + f_{\text{min}}}{2}, \quad f_2 = f_1 - 0,4334(f_{\text{max}} + f_{\text{min}}), \quad f_3 = f_1 + 0,4334(f_{\text{max}} + f_{\text{min}}).\]

Примеры решения задач

Пример 5.1. Определить полосу пропускания тракта промежуточной частоты супергетеродинногон приёмника при однокаскадном транзисторном гетеродине с температурной стабилизацией резонансной частоты колебательного контура в цепи коллекторного тока. Частота настройки приёника \(f_{\text{pp}} = 465 \text{ кГц} \), настройка гетеродина верхняя. Верхняя частота амплитудной модуляции \(F_B = 4,5 \text{ кГц} \). Относительная нестабильность частоты передачи \(B_C = 10^{-6} \).

Решение.
1. Учитывая заданные требования по данным табл.5.1, принимаем \(B_f = 10^{-4} \).
2. Определяем необходимую частоту гетеродина при верхней настройке

\[
f_r = f_c + f_{\text{pp}} = 1 \cdot 10^6 + 465 \cdot 10^3 = 1,465 \text{ МГц}.
\]
3. Рассчитываем уход частоты гетеродина \(\Delta f_r \) и уход частоты передатчика \(\Delta f_c \)

\[
\Delta f_r = B_f \cdot f_r = 10^{-4} \cdot 1,465 \cdot 10^6 = 146,5 \text{ Гц}, \quad \Delta f_c = B_r \cdot f_c = 10^{-6} \cdot 10^6 = 1 \text{ Гц}.
\]
4. Находим ширину спектра сигнала \(2\Delta f \) и полосу пропускания

\[
2\Delta f = 2F_1 = 2 \cdot 4,5 \cdot 10^3 = 9 \text{ кГц}.
\]

\[
\Pi_{\text{pp}} = 2\Delta f + 2\sqrt{(\Delta f_{\text{r}, \text{max}})^2 \cdot (\Delta f_{\text{c}, \text{max}})^2} = 9 \cdot 10^3 + 2\sqrt{146,5^2 + 1^2} = 9293 \text{ Гц}.
\]
5. Определяем коэффициент расширения полосы

\[K_p = \frac{\Pi_{IP}}{2\Delta f} = 1 + \frac{2\sqrt{\left(\Delta f_{G,\text{max}}\right)^2 + \left(\Delta f_{C,\text{max}}\right)^2}}{2\Delta f} = 1 + \frac{2\sqrt{146.5^2 + 1^2}}{9 \cdot 10^3} = 1.03. \]

Так как найденный коэффициент расширения полосы меньше 1,2, то повышать стабильность частоты гетеродина нецелесообразно.

Пример 5.2. Определить параметры преобразователя частоты, выполненного на полевом транзисторе, зависимость крутизны которого от напряжения \(U_{3C} \) показана на рис. 5.8. Частота сигнала 49,75 МГц. Настройка гетеродина верхняя. Промежуточная частота 35 МГц. Избирательная система представляет одиночный контур с эквивалентной ёмкостью \(C_3 = 20 \text{ пФ} \) и полосой пропускания \(2\Delta f = 8 \text{ МГц} \).

<table>
<thead>
<tr>
<th>Схема гетеродина</th>
<th>Коэффициент относительной нестабильности, (b_f)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Декаметровые и более длинные волны</td>
</tr>
<tr>
<td></td>
<td>Транзисторная схема</td>
</tr>
<tr>
<td>Однокаскадная Без кварцевой стабилизации</td>
<td>(10^{-3} \ldots 10^{-4})</td>
</tr>
<tr>
<td>Однокаскадная С кварцевой стабилизацией</td>
<td>(10^{-5} \ldots 10^{-7})</td>
</tr>
<tr>
<td>Многокаскадная с умножением частоты и кварцевой стабилизацией</td>
<td>(10^{-6} \ldots 10^{-7})</td>
</tr>
</tbody>
</table>

Решение.

Из рис. 5.8 следует, что средняя точка практически линейного участка характеристики П соответствует смещению на управляющем электроде \(U_{3C0} = -3 \text{ В} \). При этом крутизна \(S_P = 1.75 \text{мА/В} \). Таким образом, к затвору полевого транзистора необходимо подвести напряжение от гетеродина с амплитудой

\[U_{mg} = \frac{U_{3C0}}{0.85 \ldots 0.9} = 3.3 \ldots 3.5 \text{ В}. \]

Примем \(U_{mg} = 3.4 \text{ В} \). Тогда при максимальном положительном напряжении гетеродина рабочая точка П переместится в точку А с \(S_A = 4.2 \text{ мА/В} \), а при максимальном отрицательном напряжении гетеродина она перейдёт в точку Б с крутизной \(S_B = 0.5 \text{ мА/В} \). При таком режиме амплитуда изменения крутизны характеристики под воздействием гетеродинного напряжения

\[S_M \approx 0.5 \left(S_A - S_B \right) + 0.5 \left(S_P - S_B \right) = 0.5 \left(S_A - S_B \right) = 0.5 \left(4.2 - 0.5 \right) = 1.85 \text{ мА/В}. \]
Следовательно, крутизна преобразователя будет равна $S_{np} = 0,5S_M = 0,925$ мА/В. Вычисляем индуктивность контуров катушки

$$L = \frac{1}{\left(\omega_{np}\right)^2} C_\omega = \frac{1}{6,28^2 \cdot 35^2 \cdot 10^{12} \cdot 20 \cdot 10^{-12}} = 97 \text{ мкГн}.$$

и эквивалентную проводимость контура

$$g_\omega = d_\omega \omega_{np} C_\omega = \frac{2\Delta f}{f_{np}} \omega_{np} C_\omega = \frac{8 \cdot 10^6}{35 \cdot 10^6} \cdot 6,28 \cdot 35 \cdot 10^6 \cdot 20 \cdot 10^{-12} = 10^{-3} \text{ См}.$$

Принимая коэффициенты включения в контур $m = n = 1$, получим резонансный коэффициент усиления преобразователя частоты

$$K_{0, np} = \frac{m \cdot n \cdot S_{np}}{g_\omega} = \frac{1 \cdot 1 \cdot 0,925 \cdot 10^{-9}}{10^{-3}} = 0,925.$$

Малое значение коэффициента преобразователя частоты объясняется широкой полосой пропускания и большой эквивалентной проводимостью контура.

Пример 5.3. Определить параметры преобразователя частоты, выполненного на биполярном транзисторе с параметрами: $f_\alpha = 100$ МГц; $g_{11} = 0,7$ мСм; $g_{22} = 10$ мкСм; $v_{21} = 31$ мСм; $r_B = 50$ Ом; $a_0 = 0,98$; $C_{11} = 160$ пФ; $C_{22} = 10$ пФ; $C_{12} = 7,5$ пФ; $I_{K0} = 10$ мкА. Перед ПЧ стоит каскад усилителя радиосигнала на таком же транзисторе с двойным автотрансформаторным включением колебательного контура. Диапазон принимаемых частот: $f_{min} = 150$ кГц, $f_{max} = 408$ кГц. Требуемая полоса пропускания $2\Delta f = 9$ кГц, собственное затухание контура $d = 0,015$, эквивалентное затухание контура $d_\omega = 0,017$. Нагрузка преобразователя частоты представляет двухконтурную связанную систему, настроенную на промежуточную частоту $f_{np} = 465$ кГц; эквивалентная емкость $C_\omega = 1640$ пФ; коэффициент включения в контур нагрузки $n = 0,097$.

105
Решение.
1. Определяем крутизну преобразователя частоты

\[S_{\text{пр}} = 0,25y_{21} = 7,8 \cdot 10^{-3} \text{ См}. \]

2. Рассчитываем параметры транзистора в режиме преобразования

\[G_{22\text{пр}} = (0,6...0,8)g_{22} = (0,6...0,8)10^{-5}. \]

Принимаем \(g_{22\text{пр}} = 0,7g_{22} = 7 \cdot 10^{-6} \text{ См.} \)

3. Собственная проводимость первого контура

\[g_1 = d\omega_{\text{пр}}C_3 = 0,015 \cdot 6,38 \cdot 465 \cdot 10^{3} \cdot 1640 \cdot 10^{-12} = 71,5 \cdot 10^{-6} \text{ См.} \]

4. Эквивалентная проводимость первого контура

\[g_1 = d_3\omega_{\text{пр}}C_3 = 0,017 \cdot 6,38 \cdot 465 \cdot 10^{3} \cdot 1640 \cdot 10^{-12} = 81,5 \cdot 10^{-6} \text{ См.} \]

5. Определяем коэффициент включения транзистора в первый контур

\[m = \sqrt{\frac{g_{1\omega} - g_1}{g_{22\text{пр}}}} = \sqrt{\frac{81,5 \cdot 10^{-6} - 71,5 \cdot 10^{-6}}{7 \cdot 10^{-6}}} = 1,2. \]

Так как \(m > 1, \) то для обеспечения требуемых параметров контура принимаем \(m = 1 \) и параллельно контуру включаем шунтирующую проводимость

\[g_{\omega\omega} = \omega_{\text{пр}}C_3 (d_3 - d) - m^2g_{22\text{пр}} = 3 \cdot 10^{-6} \text{ См.} \]

6. Находим резонансный коэффициент усиления преобразователя частоты

\[K_{0\text{пр}} = 0,5\frac{m \cdot n \cdot y_{21\text{пр}}}{g_3} = 0,5 \cdot 0,0997 \cdot 7,8 \cdot 10^{-3} = 4,65. \]

7. Полагая коэффициент устойчивости \(K_Y = 0,9, \) рассчитываем устойчивый резонансный коэффициент усиления преобразователя частоты

\[K_{0\text{УСТ}} = \sqrt{\frac{2 \cdot K_Y \cdot (1 - K_Y) \cdot y_{21}}{\omega_{\text{пр}}C_{12}}} = \sqrt{\frac{2 \cdot 0,9 \cdot (1 - 0,9) \cdot 31 \cdot 10^{-3}}{6,28 \cdot 4,65 \cdot 10^{3} \cdot 7,5 \cdot 10^{-12}}} = 159,6. \]

Так как \(K_{\text{пр}} < K_{0\text{УСТ}}, \) то преобразователь частоты будет работать устойчиво.
Задачи

5.1. Рассчитать зависимость крутизны преобразования на первой гармонике напряжения гетеродина от напряжения смещения E_{CM} на затворе полевого транзистора, если ток стока полевого транзистора

$$i_c = b \cdot (U_s)^2, \quad b = \frac{1\text{мА}}{В}, \quad U_m = 1\text{В}.$$

Напряжение смещения изменяется от 0 до 3 $В$.

5.2. Биполярный транзистор работает в режиме смесителя: $U_{m\Gamma} = 20\text{мВ}$, $U_{K\Theta} = 270\text{мВ}$, $U_{K\Theta} = 5\text{В}$. По входным и выходным характеристикам этого транзистора (рис 5.9 а, б) определить крутизну преобразования по первой гармонике напряжения гетеродина.

5.3. Проходная характеристика транзистора определяется выражением $I_K = bU^2_{K\Theta}$ ($b = 100\text{мА/В}$). Амплитуда напряжения гетеродина $U_{m\Gamma} = 100\text{мВ}$. Найти максимальную крутизну преобразования на первой гармонике колебания гетеродина.

5.4. Диодный смеситель работает при амплитуде напряжения гетеродина $U_{m\Gamma} = 1\text{В}$. ВАХ диода кусочно-линейная с крутизной $S = 10\text{мА/В}$. Рассчитать крутизну преобразования на первой гармонике колебания гетеродина.

5.5. У полевого двухзатворного транзистора $i_c = b(U_{z1} + U_{z2})^2$ при $U_{z1} \geq 0, U_{z2} \geq 0$. Коэффициент $b = 5\text{мА/В}$, амплитуда напряжения смещения рабочей точки по первому затвору $E_{CM1} = 1\text{В}$, напряжение сигнала много меньше напряжения гетеродина. Определить максимальную крутизну преобразования.

5.6. Диодный смеситель на точечном диоде (ТДК) работает при амплитуде напряжения гетеродина $U_{m\Gamma} = 0,6\text{В}$. Преобразование осуществляется на
первой гармонике колебания гетеродина. Как изменится коэффициент передачи смесителя гетеродина при замене ТДК на диод с барьером Шоттки (ДБШ), если: а) при замене режим работы схемы остаётся прежним; б) при замене подать на ДБШ смещение 0,5 В, одновременно уменьшив напряжение гетеродина до 0,3 В?

Идеализированные характеристики ТДК и ДБШ приведены на рис. 5.10.

![Рис. 5.10. К задаче 5.6](image1)

![Рис. 5.11. К задаче 5.7](image2)

5.7. Какую мощность гетеродина необходимо подать на диодный балансный смеситель для достижения: а) максимального коэффициента передачи смесителя; б) максимальной чувствительности РПУ без УРЧ при коэффициенте шума УПЧ, равном 2,1? Зависимость потерь преобразования L_D и коэффициента шума $Ш$ смесительного диода от подводимой мощности гетеродина показаны на рис. 5.11.

5.8. Первый каскад РПУ – балансный диодный смеситель. Коэффициент шума УПЧ $Ш_{УПЧ} = 1,5$. Имеются два типа смесительных диодов: первый с шумовым отношением $t_D = 2$ и потерями преобразования $L_D = 6$ дБ и второй соответственно с $t_D = 3$ и $L_D = 4,5$ дБ. Какой из них нужно использовать для получения минимального шума РПУ?

5.9. Смеситель собран на полевом транзисторе, у которого $i_C = bU^2_z$ при $U_z \geq 0$ и $i_C = 0$ при $U_z < 0$. Какой режим более благоприятен для возникновения комбинационного свиста при $E_{CM} = U_{mC}$ или при $E_{CM} = 0$?
Контрольные вопросы

1. Каким образом происходит преобразование частоты?
2. Написать уравнения, связывающие напряжения на входе и выходе преобразователя частоты.
3. В чем отличие эквивалентных схем преобразовательных и усилительных каскадов?
4. Сравнить крутизну преобразования с крутизной активного элемента в режиме усиления.
5. Перечислить требования к вольтамперной характеристике смесителя для напряжения сигнала и гетеродина.
6. Как выбрать промежуточную частоту РПУ?
7. Каким образом можно ослабить влияние побочных каналов приема?
8. Какие побочные каналы приема возможны в РПУ?
9. Указать особенности инфрадинного РПУ.
10. Нарисовать схему балансного транзисторного преобразователя частоты; отметить его особенности.
11. Пояснить принцип работы диодного преобразователя частоты.
12. Указать особенности резистивного и емкостного диодного преобразователя.
13. Нарисовать схему преобразователя частоты на двухзатворном полевом транзисторе.
14. Указать особенности инвертирующего и неинвертирующего преобразователя частоты.
15. Пояснить принцип работы преобразователя частоты без зеркального канала.
16. Перечислить достоинства и недостатки кольцевых балансных смесителей.
6 УСИЛИТЕЛИ ПРОМЕЖУТОЧНОЙ ЧАСТОТЫ

Усилители промежуточной частоты обеспечивают основную избирательность приемника по соседнему каналу и основное усиление принимаемого сигнала по высокой частоте (до 10⁴ К 10⁶ раз). Кроме этого, УПЧ определяет форму частотной и фазовой характеристики РПУ.

В зависимости от ширины полосы пропускания тракта УПЧ подразделяются на узкополосные, когда относительная ширина полосы пропускания $\frac{\Pi_{0,7}}{f_{pr}} \leq 0,05...0,1$ и широкополосные, у которых $\frac{\Pi_{0,7}}{f_{pr}} \geq 0,05...0,1$.

К основным качественным показателям УПЧ относятся:

1. Коэффициент усиления тракта $K_0 = \prod_{i=1}^{n} K_i$, где K_i — коэффициент усиления отдельного каскада; n — число каскадов.

2. Ширина полосы пропускания $\Pi_{0,7} = 2\Delta f_{0,7}$, определяемая интервалом частот, в пределах которо неравномерность амплитудно-частотной характеристики не превышает заданного значения, обычно 0,7 (3 дБ).

3. Коэффициент прямоугольности амплитудно-частотной характеристики (АЧХ) $K_{пл}$, определяемый отношением полосы пропускания по уровням 0,7 и какому-то другому заданному уровню (например, по уровням 0,1; 0,01; 0,001; 0,0001). Чем ближе коэффициент прямоугольности к 1, тем лучше избирательные свойства УПЧ. Таким образом, например,

$$K_{пл} = \frac{\Pi_{0,01}}{\Pi_{0,7}} = \frac{2\Delta f_{0,01}}{2\Delta f_{0,7}}.$$

Наибольшее распространение получили три формы АЧХ: одногорбая (рис. 6.1 а), с максимально плоской вершиной (рис. 6.1 б) и с провалами (рис. 6.1 в).

Рис. 6.1. Формы амплитудно-частотной характеристики

По принципу формирования АЧХ УПЧ подразделяются на УПЧ с распределенной избирательностью (рис. 6.2 а) и с сосредоточенной избирательностью (рис. 6.2 б).
При построении тракта УПЧ по принципу распределенной избирательности (рис. 6.2 а) каждый каскад УПЧ состоит из усилительного прибора (УП) и частотно-избирательной цепи (ЧИЦ), представляющей собой резонансную систему с элементами связи с УП и следующим каскадом.

Необходимая форма АЧХ УПЧ с сосредоточенной избирательностью (рис. 6.2 б) обеспечивается фильтром сосредоточенной селекции (ФСС), а усиление — последующими каскадами УПЧ, которые в большинстве случаев представляют апериодические усилители.

6.1 Формирование АЧХ в УПЧ с распределенной избирательностью

Наибольшее распространение получили УПЧ с одноконтурными ЧИЦ. В общем случае такой УПЧ представляет каскадное соединение нескольких одноконтурных резонансных усилителей и формирует АЧХ вида A (рис. 6.1 а). АЧХ вида B (рис. 6.1 б) формируется с помощью УПЧ, собранных на попарно-расстроенных контурах или на тройках расстроенных контуров, которые используются редко.

Широкое применение находят УПЧ с двухконтурными полосовыми фильтрами, у которых оба контура настроены на одну и ту же частоту и имеют одинаковые затухания.

Эквивалентное затухание контуров в одноконтурных УПЧ и в УПЧ с двухконтурными полосовыми фильтрами определяется следующим образом:

\[d_3 = \frac{\prod_{i=1}^{n} \Psi(n)}{f_{IP}} \]

где \(\Psi(n) \) – функция, значения которой приведены в табл. 6.1.

Частоты настройки контуров определяются их эквивалентным затуханием \(d_3 \) и обобщенной расстройкой \(\xi_0 \)

\[f_{l,2} = f_{IP} \left[\sqrt{1 + \left(\frac{d_3 \cdot \xi_0}{2} \right)^2 + \frac{d_3 \cdot \xi_0}{2}} \right] \approx f_{IP} \left(1 + \frac{d_3 \cdot \xi_0}{2} \right). \]

Коэффициент связи \(K_{CB} \) между контурами полосового фильтра, равный \(M/\sqrt{L_1L_2} \) при трансформаторной связи (рис. 6.3 а) и

\[C_{CB} \]

при непосредственной связи (рис. 6.3 б):

\[C_{CB} \]

\[\sqrt{(C_{K1} + C_{CB})(C_{K2} + C_{CB})} \]
при внешней емкостной связи (рис. 6.3 б), определяется эквивалентным затуханием контуров d_3 и фактором связи β

$$K_{CB} = \frac{\beta_{d_3}}{\sqrt{1 + \left(\beta_{d_3}\right)^2}} \approx \beta_{d_3}.$$ \quad (6.3)

Значения обобщенных расстроек ξ_0 контуров УПЧ с попарно расстроенными контурами и значения фактора связи β двухконтурных полосовых фильтров УПЧ приведены в табл. 6.2.

Таблица 6.1

<table>
<thead>
<tr>
<th>Форма АЧХ (рис. 6.1)</th>
<th>Тип усилителя</th>
<th>Число каскадов n</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>УПЧ с настроенными в резонанс контурами</td>
<td>1,0</td>
</tr>
<tr>
<td></td>
<td>с попарно расстроенными контурами</td>
<td>0,707</td>
</tr>
<tr>
<td></td>
<td>с двухконтурными полосовыми фильтрами</td>
<td>0,707</td>
</tr>
<tr>
<td>C</td>
<td>с попарно расстроенными контурами</td>
<td>0,275</td>
</tr>
<tr>
<td>$K/K_{max}=0,707$</td>
<td>с двухконтурными полосовыми фильтрами</td>
<td>0,275</td>
</tr>
</tbody>
</table>

![Рис. 6.3. Варианты связи между контурами полосового фильтра](image)
Таблица 6.2

<table>
<thead>
<tr>
<th>Форма АЧХ</th>
<th>Число каскадов n</th>
</tr>
</thead>
<tbody>
<tr>
<td>В</td>
<td>ξ₀ = β = 1</td>
</tr>
<tr>
<td>С K/K_max = 0,707 на частоте f_{PR}</td>
<td>ξ₀</td>
</tr>
<tr>
<td></td>
<td>β</td>
</tr>
</tbody>
</table>

Значения коэффициентов прямоугольности K_{λ0,1} и K_{λ0,01} для УПЧ с настроенными в резонанс контурами (АЧХ формы А) и УПЧ с двухконтурными полосовыми фильтрами (АЧХ формы В и С) приведены в табл. 6.3.

Таблица 6.3

<table>
<thead>
<tr>
<th>Форма АЧХ</th>
<th>К_{λ}</th>
<th>Число каскадов n</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>K_{λ0,1}</td>
<td>10,0</td>
</tr>
<tr>
<td></td>
<td>K_{λ0,01}</td>
<td>100,0</td>
</tr>
<tr>
<td>B</td>
<td>K_{λ0,1}</td>
<td>3,16</td>
</tr>
<tr>
<td></td>
<td>K_{λ0,01}</td>
<td>10,0</td>
</tr>
<tr>
<td>C K/K_max = 0,707 на частоте f_{PR}</td>
<td>K_{λ0,1}</td>
<td>2,35</td>
</tr>
<tr>
<td></td>
<td>K_{λ0,01}</td>
<td>7,22</td>
</tr>
</tbody>
</table>

Значения коэффициентов прямоугольности АЧХ n-каскадного УПЧ с парно расстроенными контурами равны значениям этих коэффициентов для УПЧ с полосовыми фильтрами, число каскадов которого равно 0,5n.

Избирательность УПЧ с настроенными в резонанс, парно расстроеными контурами и двухконтурными полосовыми фильтрами на частоте f в зависимости от количества каскадов можно определить по данным рис. 6.4. Обобщенная расстройка на частоте f равна

\[\xi = \frac{f}{f_{PR} \left(f_{PR} - f \right)} \] \hspace{1cm} (6.4)

6.2 Режимы работы каскадов УПЧ с распределенной избирательностью

В усилителях промежуточной частоты возможны различные режимы работы каскадов, которые зависят как от числа каскадов, так и от требований к АЧХ. Рассмотрим основные режимы работы каскадов.
Режим оптимального согласования аналогичен такому же режиму УРЧ и характерен для УПЧ на биполярных транзисторах при умеренно широкой поло-се пропускания. Согласование проводимостей \(g_{22}, \ g_{11} \) (рис. 6.5) и получение расчетного значения эквивалентного затухания \(d_3 \) достигается соответствующим выбором коэффициентов включения контура к транзисторам.

Для УПЧ с одноконтурными \(\text{ЧИЦ общий коэффициент усиления} \)

\[
K_{0\Sigma} = \frac{K_{0D} \cdot K_0^{(n-1)}}{\chi(n)}, \tag{6.5}
\]

где \(K_{0D} = \frac{|Y_{21}|}{2 \sqrt{g_{22} \cdot g_{\text{ВХ.D}}} \cdot g_{11}} \) представляет коэффициент усиления оконечного каскада, нагруженного на входное сопротивление детектора;

\(K_0 = \frac{|Y_{21}|}{2 \sqrt{g_{22} \cdot g_{11}}} \) – коэффициент усиления остальных каскадов;

\(\chi(n) \) – функция, значения которой приведены в табл. 6.4 и 6.5.
Коэффициенты включения

\[m = \sqrt{\frac{D - 1}{2} \frac{g_k}{g_{22}}} \quad n = \sqrt{\frac{D - 1}{2} \frac{g_k}{g_{11}}} \]
(6.6)

если заведомо известно, что \(C_k + C_M > m^2 C_{22} + n^2 C_{11} \). Здесь: \(C_k \) – собственная емкость контура; \(C_M \) – емкость монтажа; \(C_{22} \) – выходная емкость усилительного прибора; \(C_{11} \) – входная емкость следующего каскада (рис. 6.5).

При любых соотношениях между данными емкостями коэффициенты включения определяются следующим образом:

\[m = \frac{C_k + C_M}{C} \quad n = \frac{g_{22}}{g_{11}} \]
(6.7)

где

\[C = \frac{2g_{22}}{(d_3 - d_K) \omega_{IP}} \left[1 - \frac{(d_3 - d_K) \omega_{IP}}{2} \left(\frac{C_{22} + C_{11}}{g_{22}} \right) \right] \]
(6.8)

Для реализации режима оптимального согласования должно выполняться условие

\[C_k + C_M \leq \frac{2g_{22}}{(d_3 - d_K) \omega_{IP}} \left[1 - \frac{(d_3 - d_K) \omega_{IP}}{2} \left(\frac{C_{22} + C_{11}}{g_{22}} \right) \right] \]
(6.9)

при \(g_{22} < g_{11} \);

\[C_k + C_M \geq \frac{2g_{22}}{(d_3 - d_K) \omega_{IP}} \left[1 - \frac{(d_3 - d_K) \omega_{IP}}{2} \left(\frac{C_{22} + C_{11}}{g_{22}} \right) \right] \]
(6.10)

при \(g_{22} > g_{11} \).

Если рассчитывается оконечный каскад УПЧ, то в выражениях (6.7)...(6.10) вместо \(C_{11} \) и \(g_{11} \) транзистора подставляются соответственно входная проводимость \(g_{ВХ,Д} \).

При использовании УПЧ с двухконтурными полосовыми фильтрами коэффициент усиления в режиме оптимального согласования рассчитывается по формуле (6.5), а значения функции \(\chi(n) \) приведены в табл. 6.6.

Коэффициенты включения (рис. 6.6) определяются по формулам

\[m = \sqrt{\frac{C_k + C_M}{g_{22}} - C_{22}} \quad n = \sqrt{\frac{C_{11} + C_M}{(d_3 - d_K) \omega_{IP}} - C_{11}} \]
(6.11)
Таблица 6.4

Значения функции $\chi(n)$ для усилителя с настроенными в резонанс контурами ПФ_{K}

<table>
<thead>
<tr>
<th>$f_{\text{ПФ}_{\text{K}}} \cdot \Pi$</th>
<th>Число каскадов n</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>0,010</td>
<td>1,01</td>
</tr>
<tr>
<td>0,012</td>
<td>1,012</td>
</tr>
<tr>
<td>0,015</td>
<td>1,015</td>
</tr>
<tr>
<td>0,018</td>
<td>1,018</td>
</tr>
<tr>
<td>0,022</td>
<td>1,022</td>
</tr>
<tr>
<td>0,027</td>
<td>1,028</td>
</tr>
<tr>
<td>0,033</td>
<td>1,034</td>
</tr>
<tr>
<td>0,039</td>
<td>1,041</td>
</tr>
<tr>
<td>0,047</td>
<td>1,049</td>
</tr>
<tr>
<td>0,056</td>
<td>1,059</td>
</tr>
<tr>
<td>0,068</td>
<td>1,073</td>
</tr>
<tr>
<td>0,082</td>
<td>1,089</td>
</tr>
<tr>
<td>0,10</td>
<td>1,111</td>
</tr>
<tr>
<td>0,12</td>
<td>1,136</td>
</tr>
<tr>
<td>0,15</td>
<td>1,176</td>
</tr>
<tr>
<td>0,18</td>
<td>1,220</td>
</tr>
<tr>
<td>0,22</td>
<td>1,282</td>
</tr>
<tr>
<td>0,27</td>
<td>1,370</td>
</tr>
<tr>
<td>0,33</td>
<td>1,493</td>
</tr>
<tr>
<td>0,39</td>
<td>1,639</td>
</tr>
<tr>
<td>0,47</td>
<td>1,887</td>
</tr>
<tr>
<td>0,56</td>
<td>2,273</td>
</tr>
<tr>
<td>0,68</td>
<td>3,125</td>
</tr>
<tr>
<td>0,82</td>
<td>5,556</td>
</tr>
<tr>
<td>1,0</td>
<td>-</td>
</tr>
<tr>
<td>1,2</td>
<td>-</td>
</tr>
<tr>
<td>1,5</td>
<td>-</td>
</tr>
<tr>
<td>1,8</td>
<td>-</td>
</tr>
<tr>
<td>2,2</td>
<td>-</td>
</tr>
</tbody>
</table>
Таблица 6.5
Значения функции $\chi(n)$ для усилителя с попарно расстроенными контурами

<table>
<thead>
<tr>
<th>f_{npdK}</th>
<th>Число касадов n</th>
<th>Число касадов n</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$n=2$</td>
<td>$n=4$</td>
</tr>
<tr>
<td>0,010</td>
<td>2,058</td>
<td>4,187</td>
</tr>
<tr>
<td>0,012</td>
<td>2,070</td>
<td>4,225</td>
</tr>
<tr>
<td>0,015</td>
<td>2,088</td>
<td>4,284</td>
</tr>
<tr>
<td>0,018</td>
<td>2,106</td>
<td>4,344</td>
</tr>
<tr>
<td>0,022</td>
<td>2,131</td>
<td>4,426</td>
</tr>
<tr>
<td>0,027</td>
<td>2,162</td>
<td>4,530</td>
</tr>
<tr>
<td>0,033</td>
<td>2,201</td>
<td>4,669</td>
</tr>
<tr>
<td>0,039</td>
<td>2,240</td>
<td>4,791</td>
</tr>
<tr>
<td>0,047</td>
<td>2,295</td>
<td>4,980</td>
</tr>
<tr>
<td>0,056</td>
<td>2,359</td>
<td>5,201</td>
</tr>
<tr>
<td>0,068</td>
<td>2,448</td>
<td>5,515</td>
</tr>
<tr>
<td>0,082</td>
<td>2,559</td>
<td>5,911</td>
</tr>
<tr>
<td>0,10</td>
<td>2,713</td>
<td>6,475</td>
</tr>
<tr>
<td>0,12</td>
<td>2,901</td>
<td>7,183</td>
</tr>
<tr>
<td>0,15</td>
<td>3,222</td>
<td>8,436</td>
</tr>
<tr>
<td>0,18</td>
<td>3,599</td>
<td>9,974</td>
</tr>
<tr>
<td>0,22</td>
<td>4,215</td>
<td>12,62</td>
</tr>
<tr>
<td>0,27</td>
<td>5,234</td>
<td>17,28</td>
</tr>
<tr>
<td>0,33</td>
<td>7,032</td>
<td>26,11</td>
</tr>
<tr>
<td>0,39</td>
<td>9,945</td>
<td>41,40</td>
</tr>
<tr>
<td>0,47</td>
<td>17,79</td>
<td>84,27</td>
</tr>
<tr>
<td>0,56</td>
<td>46,21</td>
<td>226,2</td>
</tr>
<tr>
<td>0,68</td>
<td>-</td>
<td>1467</td>
</tr>
</tbody>
</table>

Таблица 6.6
Значения функции $\chi(n)$ для усилителя с двухконтурными полосовыми фильтрами

<table>
<thead>
<tr>
<th>f_{npdK}</th>
<th>Число касадов n</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n=1$</td>
<td>$n=2$</td>
</tr>
<tr>
<td>0,010</td>
<td>1,014</td>
</tr>
<tr>
<td>0,012</td>
<td>1,017</td>
</tr>
<tr>
<td>0,015</td>
<td>1,022</td>
</tr>
<tr>
<td>0,018</td>
<td>1,026</td>
</tr>
<tr>
<td>0,022</td>
<td>1,032</td>
</tr>
<tr>
<td>0,027</td>
<td>1,040</td>
</tr>
<tr>
<td>0,033</td>
<td>1,049</td>
</tr>
<tr>
<td>0,039</td>
<td>1,058</td>
</tr>
<tr>
<td>0,047</td>
<td>1,071</td>
</tr>
<tr>
<td>0,056</td>
<td>1,086</td>
</tr>
<tr>
<td>0,068</td>
<td>1,106</td>
</tr>
</tbody>
</table>
Продолжение табл. 6.6

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,082</td>
<td>1,131</td>
<td>1,216</td>
<td>1,296</td>
<td>1,375</td>
<td>1,453</td>
<td>1,532</td>
<td>1,611</td>
<td>1,692</td>
</tr>
<tr>
<td>0,10</td>
<td>1,165</td>
<td>1,272</td>
<td>1,376</td>
<td>1,479</td>
<td>1,583</td>
<td>1,689</td>
<td>1,797</td>
<td>1,908</td>
</tr>
<tr>
<td>0,12</td>
<td>1,204</td>
<td>1,340</td>
<td>1,473</td>
<td>1,608</td>
<td>1,745</td>
<td>1,887</td>
<td>2,033</td>
<td>2,185</td>
</tr>
<tr>
<td>0,15</td>
<td>1,269</td>
<td>1,452</td>
<td>1,637</td>
<td>1,827</td>
<td>2,026</td>
<td>2,236</td>
<td>2,457</td>
<td>2,690</td>
</tr>
<tr>
<td>0,18</td>
<td>1,341</td>
<td>1,579</td>
<td>1,825</td>
<td>2,086</td>
<td>2,364</td>
<td>2,662</td>
<td>2,984</td>
<td>3,330</td>
</tr>
<tr>
<td>0,22</td>
<td>1,452</td>
<td>1,776</td>
<td>2,125</td>
<td>2,506</td>
<td>2,925</td>
<td>3,389</td>
<td>3,901</td>
<td>4,468</td>
</tr>
<tr>
<td>0,27</td>
<td>1,618</td>
<td>2,078</td>
<td>2,599</td>
<td>3,192</td>
<td>3,870</td>
<td>4,647</td>
<td>5,536</td>
<td>6,554</td>
</tr>
<tr>
<td>0,33</td>
<td>1,875</td>
<td>2,555</td>
<td>3,373</td>
<td>4,356</td>
<td>5,535</td>
<td>6,948</td>
<td>8,636</td>
<td>10,65</td>
</tr>
<tr>
<td>0,39</td>
<td>2,230</td>
<td>3,217</td>
<td>4,489</td>
<td>6,103</td>
<td>8,138</td>
<td>10,69</td>
<td>13,88</td>
<td>17,85</td>
</tr>
<tr>
<td>0,47</td>
<td>2,982</td>
<td>4,597</td>
<td>6,895</td>
<td>10,05</td>
<td>14,32</td>
<td>20,03</td>
<td>27,62</td>
<td>37,62</td>
</tr>
<tr>
<td>0,56</td>
<td>4,807</td>
<td>7,520</td>
<td>12,19</td>
<td>19,21</td>
<td>29,50</td>
<td>44,36</td>
<td>65,55</td>
<td>94,46</td>
</tr>
<tr>
<td>0,68</td>
<td>26,09</td>
<td>19,15</td>
<td>32,50</td>
<td>55,88</td>
<td>94,28</td>
<td>155,8</td>
<td>252,4</td>
<td>402,3</td>
</tr>
<tr>
<td>0,82</td>
<td>-</td>
<td>206,0</td>
<td>196,6</td>
<td>326,9</td>
<td>582,3</td>
<td>1043</td>
<td>1853</td>
<td>3249</td>
</tr>
</tbody>
</table>

АЧХ формы С с $K/K_{max} = 0,707$

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,010</td>
<td>1,468</td>
<td>1,468</td>
<td>1,504</td>
<td>1,522</td>
<td>1,538</td>
<td>1,554</td>
<td>1,569</td>
<td>1,584</td>
</tr>
<tr>
<td>0,012</td>
<td>1,479</td>
<td>1,501</td>
<td>1,523</td>
<td>1,544</td>
<td>1,564</td>
<td>1,584</td>
<td>1,602</td>
<td>1,621</td>
</tr>
<tr>
<td>0,015</td>
<td>1,496</td>
<td>1,524</td>
<td>1,552</td>
<td>1,579</td>
<td>1,605</td>
<td>1,630</td>
<td>1,654</td>
<td>1,677</td>
</tr>
<tr>
<td>0,018</td>
<td>1,513</td>
<td>1,548</td>
<td>1,582</td>
<td>1,615</td>
<td>1,646</td>
<td>1,677</td>
<td>1,707</td>
<td>1,736</td>
</tr>
<tr>
<td>0,022</td>
<td>1,537</td>
<td>1,580</td>
<td>1,623</td>
<td>1,664</td>
<td>1,704</td>
<td>1,743</td>
<td>1,781</td>
<td>1,819</td>
</tr>
<tr>
<td>0,027</td>
<td>1,568</td>
<td>1,622</td>
<td>1,676</td>
<td>1,729</td>
<td>1,780</td>
<td>1,830</td>
<td>1,879</td>
<td>1,928</td>
</tr>
<tr>
<td>0,033</td>
<td>1,607</td>
<td>1,674</td>
<td>1,743</td>
<td>1,810</td>
<td>1,876</td>
<td>1,941</td>
<td>2,005</td>
<td>2,069</td>
</tr>
<tr>
<td>0,039</td>
<td>1,648</td>
<td>1,729</td>
<td>1,814</td>
<td>1,897</td>
<td>1,978</td>
<td>2,059</td>
<td>2,140</td>
<td>2,221</td>
</tr>
<tr>
<td>0,047</td>
<td>1,705</td>
<td>1,807</td>
<td>1,914</td>
<td>2,020</td>
<td>2,125</td>
<td>2,231</td>
<td>2,337</td>
<td>2,445</td>
</tr>
<tr>
<td>0,056</td>
<td>1,775</td>
<td>1,901</td>
<td>2,035</td>
<td>2,170</td>
<td>2,307</td>
<td>2,445</td>
<td>2,584</td>
<td>2,727</td>
</tr>
<tr>
<td>0,068</td>
<td>1,878</td>
<td>2,038</td>
<td>2,214</td>
<td>2,395</td>
<td>2,579</td>
<td>2,767</td>
<td>2,962</td>
<td>3,162</td>
</tr>
<tr>
<td>0,082</td>
<td>2,014</td>
<td>2,217</td>
<td>2,450</td>
<td>2,693</td>
<td>2,946</td>
<td>3,209</td>
<td>3,484</td>
<td>3,771</td>
</tr>
<tr>
<td>0,10</td>
<td>2,221</td>
<td>2,484</td>
<td>2,805</td>
<td>3,149</td>
<td>3,515</td>
<td>3,904</td>
<td>4,317</td>
<td>4,757</td>
</tr>
<tr>
<td>0,12</td>
<td>2,507</td>
<td>2,842</td>
<td>3,285</td>
<td>3,776</td>
<td>4,310</td>
<td>4,891</td>
<td>5,522</td>
<td>6,209</td>
</tr>
<tr>
<td>0,15</td>
<td>3,107</td>
<td>3,543</td>
<td>4,234</td>
<td>5,038</td>
<td>5,948</td>
<td>6,974</td>
<td>8,127</td>
<td>9,421</td>
</tr>
<tr>
<td>0,18</td>
<td>4,085</td>
<td>4,539</td>
<td>5,587</td>
<td>6,874</td>
<td>8,394</td>
<td>10,17</td>
<td>12,23</td>
<td>14,63</td>
</tr>
<tr>
<td>0,22</td>
<td>7,037</td>
<td>6,683</td>
<td>8,457</td>
<td>10,85</td>
<td>13,83</td>
<td>17,50</td>
<td>21,97</td>
<td>27,38</td>
</tr>
<tr>
<td>0,27</td>
<td>73,06</td>
<td>12,43</td>
<td>15,636</td>
<td>20,87</td>
<td>27,97</td>
<td>37,28</td>
<td>49,29</td>
<td>64,67</td>
</tr>
<tr>
<td>0,33</td>
<td>-</td>
<td>39,17</td>
<td>40,66</td>
<td>54,49</td>
<td>76,12</td>
<td>107,0</td>
<td>149,8</td>
<td>208,5</td>
</tr>
<tr>
<td>0,39</td>
<td>-</td>
<td>774,6</td>
<td>116,7</td>
<td>193,1</td>
<td>266,5</td>
<td>384,7</td>
<td>562,1</td>
<td>822,1</td>
</tr>
<tr>
<td>0,47</td>
<td>-</td>
<td>21060</td>
<td>2995</td>
<td>2903</td>
<td>3790</td>
<td>5454</td>
<td>9160</td>
<td></td>
</tr>
</tbody>
</table>
Рис. 6.6. К определению коэффициентов включения

Режим оптимального согласования реализуется при выполнении условий

$$C_K + C_m \leq C_{22} \left[\frac{g_{22}}{C_{22} (d_3 - d_k) \omega_{lp}} - 1 \right], \quad C_{K2} + C_m \leq C_{11} \left[\frac{g_{11}}{C_{11} (d_3 - d_k) \omega_{lp}} - 1 \right]. \quad (6.12)$$

В том случае, когда при согласовании проводимостей g_{22} и g_{11} величина вносимых в контур потерь недостаточна для получения расчетного затухания, режим согласования достигается шунтированием контура резистором. В этом случае для одноконтурных УПЧ при $g_{22} < g_{11}$

$$m = 1, \quad n = \sqrt{\frac{g_{22}}{g_{11}}}, \quad (6.13)$$

а для $g_{22} > g_{11}$

$$n = 1, \quad m = \sqrt{\frac{g_{22}}{g_{11}}}. \quad (6.14)$$

Шунтирующее сопротивление рассчитывается

$$R_{sh} = \frac{1}{C_{KE} (d_3 - d_k) \omega_{lp} - 2g_{22}} \quad \text{при} \quad g_{22} < g_{11} \quad (6.15)$$

и

$$R_{sh} = \frac{1}{C_{KE} (d_3 - d_k) \omega_{lp} - 2g_{11}} \quad \text{при} \quad g_{22} > g_{11}, \quad (6.16)$$

где C_{KE} – эквивалентная емкость контура.

Общий коэффициент усиления УПЧ из n одноконтурных каскадов в режиме согласования определяется следующим образом:

$$K_{0E} = \frac{K_{0D} \cdot K_E^{(n-1)}}{y(n)},$$

где $K_E = \frac{|Y_{21}| \cdot m \cdot n}{2\pi C_{KE} \Pi}$ – единичное усиление; Π – полоса пропускания; значения $y(n)$ представлены в табл. 6.7.

При использовании УПЧ с двухконтурным полосовым фильтром возможны два случая для режима согласования.

119
Значения функции \(y(n) \) для усилителя с двухконтурыми полосовыми фильтрами

<table>
<thead>
<tr>
<th>Форма АЧХ</th>
<th>Тип усилителя</th>
<th>Число каскадов (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>с настроенными в резонанс контурами</td>
<td>1.0 2.5 7.7 30 130 550 2600 17·10³</td>
</tr>
<tr>
<td>B</td>
<td>с попарно расстроенным контурами</td>
<td>1.0 2.5 8.0 29</td>
</tr>
<tr>
<td></td>
<td>с двухконтурыми полосовыми фильтрами</td>
<td>1,414 3,1 7,77 21,14 61,26 187 593 1953</td>
</tr>
<tr>
<td>C</td>
<td>с попарно расстроенными контурами</td>
<td>0,518 0,524 0,68 1,045</td>
</tr>
<tr>
<td></td>
<td>с двухконтурыми полосовыми фильтрами</td>
<td>0,78 0,94 1,33 2,1 3,54 6,36 12 23,6</td>
</tr>
</tbody>
</table>

В первом случае, когда недостаточно проводимости \(g_{22} \) для шунтирования первого контура (при \(m = 1 \)), требуется подключение к нему шунтирующего резистора с сопротивлением

\[
R_{III} = \frac{1}{C_{KЭ} (d_э - d_K) \omega_{Пр} - g_{22}}. \tag{6.18}
\]

Резонансный коэффициент усиления

\[
K_{0Е} = K_{0Л} \cdot K_E^{(n-1)} \frac{y(n)}{y(n)}, \tag{6.19}
\]

где

\[
K_E = \sqrt[2]\frac{Y_{21}}{2\sqrt{g_{22}g_{11}}} \sqrt[2]\frac{g_{22}}{2\pi(C_{К11} + C_{M} + C_{22})}. \tag{6.20}
\]

Значения функции \(y(n) \) представлены в табл. 6.8.

Во втором случае, когда недостаточно проводимости \(g_{11} \) для шунтирования второго контура (при \(n = 1 \)), необходимо подключение к нему шунтирующего резистора с сопротивлением

\[
R_{III} = \frac{1}{C_{KЭ} (d_э - d_K) \omega_{Пр} - g_{11}}. \tag{6.21}
\]

Общий коэффициент усиления определяется по формуле (6.19), но

\[
K_E = \sqrt[2]\frac{Y_{21}}{2\sqrt{g_{22}g_{11}}} \sqrt[2]\frac{g_{22}}{2\pi(C_{K2} + C_{M} + C_{11})}. \tag{6.22}
\]
Значения функции $y(n)$ для усилителя с двухконтурными полосовыми фильтрами

<table>
<thead>
<tr>
<th>$f_{I_{DC}}$</th>
<th>Число каскадов n</th>
<th>АЧХ формы В</th>
</tr>
</thead>
<tbody>
<tr>
<td>Π</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>0,010</td>
<td>0,847</td>
<td>0,892</td>
</tr>
<tr>
<td>0,012</td>
<td>0,848</td>
<td>0,836</td>
</tr>
<tr>
<td>0,015</td>
<td>0,850</td>
<td>0,897</td>
</tr>
<tr>
<td>0,018</td>
<td>0,852</td>
<td>0,900</td>
</tr>
<tr>
<td>0,022</td>
<td>0,854</td>
<td>0,904</td>
</tr>
<tr>
<td>0,027</td>
<td>0,858</td>
<td>0,910</td>
</tr>
<tr>
<td>0,033</td>
<td>0,861</td>
<td>0,916</td>
</tr>
<tr>
<td>0,039</td>
<td>0,865</td>
<td>0,922</td>
</tr>
<tr>
<td>0,047</td>
<td>0,870</td>
<td>0,931</td>
</tr>
<tr>
<td>0,056</td>
<td>0,876</td>
<td>0,941</td>
</tr>
<tr>
<td>0,068</td>
<td>0,885</td>
<td>0,955</td>
</tr>
<tr>
<td>0,082</td>
<td>0,894</td>
<td>0,972</td>
</tr>
<tr>
<td>0,10</td>
<td>0,908</td>
<td>0,994</td>
</tr>
<tr>
<td>0,12</td>
<td>0,923</td>
<td>1,020</td>
</tr>
<tr>
<td>0,15</td>
<td>0,947</td>
<td>1,062</td>
</tr>
<tr>
<td>0,18</td>
<td>0,974</td>
<td>1,108</td>
</tr>
<tr>
<td>0,22</td>
<td>1,013</td>
<td>1,175</td>
</tr>
<tr>
<td>0,33</td>
<td>1,151</td>
<td>1,409</td>
</tr>
<tr>
<td>0,39</td>
<td>1,256</td>
<td>1,581</td>
</tr>
<tr>
<td>0,47</td>
<td>1,452</td>
<td>1,888</td>
</tr>
<tr>
<td>0,56</td>
<td>1,844</td>
<td>2,417</td>
</tr>
<tr>
<td>0,68</td>
<td>4,295</td>
<td>3,857</td>
</tr>
<tr>
<td>0,82</td>
<td>-</td>
<td>12,65</td>
</tr>
<tr>
<td>1,0</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

АЧХ формы C с $K/K_{max} = 0,707$

<table>
<thead>
<tr>
<th>$f_{I_{DC}}$</th>
<th>Число каскадов n</th>
<th>АЧХ формы C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Π</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>0,010</td>
<td>0,756</td>
<td>0,591</td>
</tr>
<tr>
<td>0,012</td>
<td>0,759</td>
<td>0,594</td>
</tr>
<tr>
<td>0,015</td>
<td>0,763</td>
<td>0,598</td>
</tr>
<tr>
<td>0,018</td>
<td>0,768</td>
<td>0,603</td>
</tr>
<tr>
<td>0,022</td>
<td>0,774</td>
<td>0,609</td>
</tr>
<tr>
<td>0,027</td>
<td>0,781</td>
<td>0,617</td>
</tr>
<tr>
<td>0,033</td>
<td>0,791</td>
<td>0,627</td>
</tr>
<tr>
<td>0,039</td>
<td>0,801</td>
<td>0,637</td>
</tr>
<tr>
<td>0,047</td>
<td>0,815</td>
<td>0,651</td>
</tr>
</tbody>
</table>
Продолжение табл. 6.8

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.056</td>
<td>0.831</td>
<td>0.668</td>
<td>0.582</td>
<td>0.532</td>
<td>0.505</td>
<td>0.493</td>
<td>0.492</td>
<td>0.501</td>
<td></td>
</tr>
<tr>
<td>0.068</td>
<td>0.855</td>
<td>0.692</td>
<td>0.607</td>
<td>0.559</td>
<td>0.534</td>
<td>0.524</td>
<td>0.527</td>
<td>0.540</td>
<td></td>
</tr>
<tr>
<td>0.082</td>
<td>0.886</td>
<td>0.721</td>
<td>0.638</td>
<td>0.593</td>
<td>0.571</td>
<td>0.565</td>
<td>0.571</td>
<td>0.589</td>
<td></td>
</tr>
<tr>
<td>0.10</td>
<td>0.930</td>
<td>0.764</td>
<td>0.683</td>
<td>0.641</td>
<td>0.623</td>
<td>0.623</td>
<td>0.636</td>
<td>0.662</td>
<td></td>
</tr>
<tr>
<td>0.12</td>
<td>0.988</td>
<td>0.817</td>
<td>0.739</td>
<td>0.702</td>
<td>0.690</td>
<td>0.697</td>
<td>0.719</td>
<td>0.756</td>
<td></td>
</tr>
<tr>
<td>0.15</td>
<td>1.100</td>
<td>0.912</td>
<td>0.839</td>
<td>0.811</td>
<td>0.811</td>
<td>0.832</td>
<td>0.873</td>
<td>0.931</td>
<td></td>
</tr>
<tr>
<td>0.18</td>
<td>1.126</td>
<td>1.032</td>
<td>0.964</td>
<td>0.948</td>
<td>0.963</td>
<td>1.005</td>
<td>1.071</td>
<td>1.161</td>
<td></td>
</tr>
<tr>
<td>0.22</td>
<td>1.655</td>
<td>1.253</td>
<td>1.186</td>
<td>1.190</td>
<td>1.237</td>
<td>1.319</td>
<td>1.435</td>
<td>1.588</td>
<td></td>
</tr>
<tr>
<td>0.27</td>
<td>5.344</td>
<td>1.708</td>
<td>1.612</td>
<td>1.651</td>
<td>1.759</td>
<td>1.924</td>
<td>2.149</td>
<td>2.441</td>
<td></td>
</tr>
<tr>
<td>0.33</td>
<td>3.032</td>
<td>2.600</td>
<td>2.668</td>
<td>2.901</td>
<td>3.260</td>
<td>3.747</td>
<td>4.382</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.39</td>
<td>13.48</td>
<td>5.265</td>
<td>5.022</td>
<td>5.429</td>
<td>6.182</td>
<td>7.257</td>
<td>8.701</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.47</td>
<td>-</td>
<td>-</td>
<td>59.18</td>
<td>19.78</td>
<td>17.92</td>
<td>19.40</td>
<td>22.61</td>
<td>27.41</td>
<td></td>
</tr>
<tr>
<td>0.56</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>231.5</td>
<td>177.9</td>
<td>163.2</td>
<td>178.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Коэффициенты включения \(m\) и \(n\) рассчитываются по формулам (6.11).

В режиме рассогласования коэффициент усиления для одноконтурных УПЧ рассчитывается согласно (6.17) при \(m = n = 1\). При расчете шунтирующих резисторов (6.15) или (6.16) вместо проводимости \(g_{22}\) или \(g_{11}\) подставляется их сумма.

В том случае, когда применяются двухконтурные УПЧ, общий коэффициент усиления

\[
K_{0\xi} = \left(\frac{|Y_{21}|}{2\pi f \sqrt{C_{k13} \cdot C_{k23}}} \right)^n \cdot \frac{1}{y(n)}. \tag{6.23}
\]

Значения \(y(n)\) представлены в табл. 6.7.

Сопротивления шунтирующих резисторов рассчитываются по формулам (6.18) и (6.21) для первого и второго контуров соответственно.

6.3 УПЧ с фильтром сосредоточенной селекции на \(LC\)-звеньях

При высоких требованиях к избирательности по соседнему каналу широко используются фильтры сосредоточенной селекции (ФСС), представляющие собой многозвенные фильтры. На рис. 6.7. показан четырехзвенный ФСС на LC–элементах. Подобные фильтры обеспечивают лучшее ослабление соседнего канала по сравнению с усилителем с двумя связанными контурами, если выполняется следующее неравенство

\[
d_3 \leq \frac{\Pi}{2\sqrt{2f_{np}}}. \tag{6.24}
\]
Необходимые исходные данные для расчета ФСС: центральная частота f_0; II – полоса пропускания по уровню 3 дБ; расстройка соседнего канала $\Delta f_\text{ск}$; ослабление сигнала соседнего канала $\sigma_\text{ск}$ (дБ); собственное затухание контуров d_k. По заданным требованиям к ФСС с учетом (6.24) определяется вид реализации ФСС: LC – фильтры; электромеханические фильтры (ЭМФ); пьезокерамические фильтры; кварцевые фильтры; ПАВ – фильтры (фильтры на поверхностных акустических волнах).

Коэффициент усиления каскада с ФСС на основе LC – звеньев определяется с учетом коэффициента ослабления сигнала в фильтре на средней частоте полосы пропускания q и равен

$$ K_0 = \frac{|Y_{21}|}{g_{\text{вх}}} m \cdot n \cdot q , \quad (6.25) $$

где m – коэффициент включения входа ФСС к транзистору; n – коэффициент включения входа следующего каскада к выходу ФСС; Y_{21} – крутизна транзистора; $g_{\text{вх}}$ – характеристическая проводимость ФСС.

Коэффициент ослабления q зависит от числа звеньев фильтра m_ϕ и от параметра связи между звеньями η (рис. 6.8), который связан с эквивалентным затуханием d_3 и равен

$$ \eta = \frac{2d_3 f_0}{II} = K_{\text{св}} \cdot Q_\eta , \quad (6.26) $$

где $K_{\text{св}}$ – коэффициент связи между контурами; Q_η – эквивалентная добротность контура.

Параметр связи выбирают, как правило, в пределах 0,3...0,6; чем он меньше, тем выше избирательность звена.

На рис. 6.9 показана зависимость ослабления одного звена d_3 от параметра связи и относительной расстройки. При одинаковых звеньях фильтра

$$ d_{\phi \text{сс}} = m_\phi d_3 . \quad (6.27) $$

123
Рис. 6.8. К определению коэффициента ослабления

Рис. 6.9. Характеристика ослабления

Коэффициент включения ФСС в цепь коллектора транзистора и в цепь последующего каскада соответственно равны

\[m = \sqrt{\frac{g_{ВХ}}{g_1}}; \quad n = \sqrt{\frac{g_{ВЫХ}}{g_2}}; \]

где \(g_1 = g_{22} + g_M; \quad g_2 = g_{11} + g_M \).

Если при расчете \(m \) и \(n \) окажутся больше единицы, то их принимают равными единице и увеличивают внешнюю проводимость за счет шунтирующего резистора до значения, обеспечивающего равенство (6.28).

В многозвенных фильтрах номинальные входная и выходная проводимости одинаковы: \(g_{ВЫХ.Ф} = g_{ВХ.Ф} = g \). Емкости конденсаторов связи между звеньями определяются из уравнения

\[C_{CB} = C_1 = \frac{g}{2\pi f_0}. \]

(6.29)

Элементы внутренних контуров рассчитываются следующим образом:

\[C_2 = \frac{g}{\pi \Pi} - 2C_1, \quad L_2 = \frac{\Pi}{4\pi f_0^2 g}. \]

(6.30)
Элементы первого и последнего контуров

\[C_3 = 0.5C_2, \quad L_1 = 2L_2. \]

(6.31)

Для выбора избирательной системы могут быть полезны данные табл. 6.9.

Таблица 6.9

<table>
<thead>
<tr>
<th>Тип избирательной системы</th>
<th>Число избирательных систем n</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Одиночный резонансный контур</td>
<td></td>
</tr>
<tr>
<td>(K_{n10})</td>
<td>10</td>
</tr>
<tr>
<td>(K_{n100})</td>
<td>100</td>
</tr>
<tr>
<td>(K_{n1000})</td>
<td>1000</td>
</tr>
<tr>
<td>(\psi_1(n))</td>
<td>1.56</td>
</tr>
<tr>
<td>(\theta_1(n))</td>
<td>2.22</td>
</tr>
<tr>
<td>Расстроенные пары при критической начальной расстройке</td>
<td></td>
</tr>
<tr>
<td>(K_{n10})</td>
<td>3.2</td>
</tr>
<tr>
<td>(K_{n100})</td>
<td>10</td>
</tr>
<tr>
<td>(K_{n1000})</td>
<td>32</td>
</tr>
<tr>
<td>(\psi_2(n))</td>
<td>0.71</td>
</tr>
<tr>
<td>(\theta_2(n))</td>
<td>6.76</td>
</tr>
<tr>
<td>Два связанных контура при критической связи</td>
<td></td>
</tr>
<tr>
<td>(K_{n10})</td>
<td>3.2</td>
</tr>
<tr>
<td>(K_{n100})</td>
<td>10</td>
</tr>
<tr>
<td>(K_{n1000})</td>
<td>32</td>
</tr>
<tr>
<td>(\psi_3(n))</td>
<td>0.71</td>
</tr>
<tr>
<td>(\theta_3(n))</td>
<td>2.06</td>
</tr>
</tbody>
</table>

Во многих случаях даже один каскад с ФСС может обеспечивать заданную избирательность РПУ по соседнему каналу. Однако, усиление этого каскада, как правило, недостаточно. Поэтому в тракте промежуточной частоты кроме каскада с ФСС применяются дополнительные каскады с резистивной нагрузкой (апериодические усилители). В подобном случае ФСС включается в качестве нагрузки преобразователя частот, благодаря чему в последующих неизбирательных каскадах вредное действие мешающих сигналов, отфильтрованных ФСС, будет отсутствовать.

Для получения высокой избирательности и узкой полосы пропускания в тракте основной селекции используются электромеханические, пьезокерамические, кварцевые, монолитные кварцевые фильтры и ПАВ-фильтры. Выбор той или иной реализации ФСС зависит от диапазона частот. Так, например, пьезокерамические фильтры работают в частотных диапазонах 8…50 кГц и 300…770 кГц с относительной полосой пропускания 0,5…1,5%. Возможно построение широкополосных фильтров для главного тракта РПУ на промежуточных часто-
тах 4,5 МГц и 10,7 МГц. В диапазоне частот от 2 до 200 МГц для построения полосовых фильтров с полосой пропускания от 0,005 до 6% применяются монолитные кварцевые фильтры. ПАВ-фильтры находят широкое применение на частотах 30…800 МГц с относительной полосой пропускания от 0,1 до 30%. Узкая полоса пропускания (0,01…0,2%) реализуется с помощью кварцевых фильтров в диапазоне частот до 30…40 МГц.

Примеры решения задач

Пример 6.1. Рассчитать полосовой усилитель на среднюю частоту $f_0=120$ кГц при полосе пропускания $\Pi=4$ кГц по уровню 0,707. Коэффициент усиления по напряжению не менее 2000. Усилитель собран на биполярном транзисторе (рис. 6.10) с параметрами: $q_{11} = 1,35$ мСм, $q_{22} = 43$ мкСм, $q_{12} = 3,5$ мкСм, $Y_{21} = 30$ мСм, $C_{12} = 30$ пФ, $C_{22} = 35$ пФ, $C_{11} = 3000$ пФ, $Q_K = 200$, $d_K = 0,005$.

![Рис. 6.10. Полосовой усилитель](image)

Решение.

1. Принимаем ориентировочно коэффициент усиления одного каскада равным 25 дБ. Тогда для реализации заданного коэффициента усиления необходимо три каскада или четыре полосовых фильтра (с учетом полосового фильтра на входе резонансного усилителя).

2. Выбираем емкость контуров полосового фильтра $C=300$ пФ, тогда индуктивность контуров фильтра

$$L_K = \frac{1}{(2\pi f_0)^2 C} = \frac{1}{(2 \cdot 3,14 \cdot 120 \cdot 10^3)^2 \cdot 300 \cdot 10^{-12}} = 5,8 \text{ мГн},$$
3. Эквивалентное затухание контура для четырех двухконтурных фильтров с заданной полосой пропускания находим из выражения

\[
d_3 = \frac{\Pi}{f_0} \cdot \frac{1}{\sqrt{\frac{4}{d^2} - 1}} = \frac{4}{120} \cdot \frac{1}{\sqrt{2} - 1} = 0,05.
\]

4. Необходимый коэффициент взаимоиндукции

\[
M = d_3 L_K = 0,05 \cdot L_K = 0,29 \text{ мГн}.
\]

5. Эквивалентная проводимость контуров

\[
G_{0E} = 2\pi f_0 C d_3 = 2 \cdot 3,14 \cdot 120 \cdot 10^3 \cdot 300 \cdot 10^{-12} \cdot 0,05 = 11,3 \text{ мкСм}.
\]

6. Собственная проводимость потерь контуров

\[
q_K = 2\pi f_0 C d_K = 2 \cdot 3,14 \cdot 120 \cdot 10^3 \cdot 300 \cdot 10^{-12} \cdot 0,005 = 1,13 \text{ мкСм}.
\]

7. Так как каскады идентичны, то принимаем

\[
g_{II} = g_{BH} = g_{II} = 1,35 \text{ мСм},
\]

\[
g_{BHH} = g_{22} = 43 \text{ мСм}.
\]

8. Коэффициент включения транзистора в колебательный контур

\[
m = \sqrt{\frac{G_{0E} - g_K}{2g_{22}}} = \sqrt{\frac{11,3 - 1,13}{2 \cdot 43}} = 0,44.
\]

9. Коэффициент трансформации для связи с нагрузкой

\[
n = \sqrt{\frac{G_{0E} - g_K}{2q_{11}}} = \sqrt{\frac{11,3 - 1,13}{2 \cdot 1350}} = 0,05.
\]

10. Величины вносимых в контуры емкостей

\[
C_1' = m^2 C_{22} = 0,44^2 \cdot 35 \cdot 10^{-12} = 6,7 \cdot 10^{-12} \Phi,
\]

\[
C_2' = n^2 C_{11} = 0,05^2 \cdot 3000 \cdot 10^{-12} = 7,5 \cdot 10^{-12} \Phi.
\]

11. Элементы цепи нейтрализации при \(N = \frac{1 - m}{m} = 1,27 \) будут равны

\[
R_N = \frac{N}{q_{12}} = \frac{1,27}{3,5 \cdot 10^{-6}} = 63 \text{ кОм} , \quad C_N = \frac{C_{12}}{N} = \frac{30 \cdot 10^{-12}}{1,27} = 25 \cdot 10^{-12} \Phi.
\]

12. Резонансный коэффициент усиления

\[
K_0 = \frac{m \cdot n \cdot |Y_{21}|}{2G_{0E}} = \frac{0,44 \cdot 0,05 \cdot 30 \cdot 10^{-3}}{2 \cdot 11,3 \cdot 10^{-6}} = 30.
\]

Пример 6.2. Одноконтурный резонансный усилитель собран на полевом транзисторе по схеме с общим истоком (рис. 6.11). Коэффициент включения транзистора в контур \(m = 0,8 \). Входная проводимость следующего каскада \(g_N = 56 \text{ мкСм} \) связана с контуром через коэффициент включения \(n \). Собственные потери в контуре \(r_K = 5 \text{ Ом} \). Контур настроен на резонансную частоту 2 МГц, ин-
дуктивность контура \(L_K = 100 \text{ мкГн} \). Параметры транзистора \(Y_{21} = 10 \text{ мА/В} \), \(C_{3C} = 0,8 \text{ пФ} \); \(g_{3C} = 0,33 \text{ мСм} \); \(C_{BХ} = 40 \text{ пФ} \); \(C_{BЫХ} = 15 \text{ пФ} \). Определить параметры контура, максимальный резонансный коэффициент усиления, проверить усилитель на устойчивость.

Рис. 6.11. Полосовой усилитель на полевом транзисторе

Решение.
1. Эквивалентная емкость контура
 \[
 C = \frac{1}{(2\pi f_0)^2 L_K} = \frac{1}{(2 \cdot 3,14 \cdot 2 \cdot 10^6)^2 \cdot 100 \cdot 10^{-6}} = 6,2 \cdot 10^{-9} \text{ Ф}.
 \]
2. Характеристическое сопротивление
 \[
 \rho = 2\pi f_0 L_K = 6,28 \cdot 2 \cdot 10^6 \cdot 100 \cdot 10^{-6} = 1256 \text{ Ом}.
 \]
3. Собственная добротность контура
 \[
 Q = \frac{\rho}{r} = 1256 \cdot 5 = 251.
 \]
4. Собственная проводимость контура
 \[
 q_K = \frac{1}{Q \rho} = \frac{1}{251 \cdot 1256} = 3 \text{ мкСм}.
 \]
5. Коэффициент включения нагрузки в контур
 \[
 m^2 q_{22} + q_K = n^2 q_H,
 \]
 \[
 n = \sqrt{\frac{m^2 q_{22} + q_K}{q_H}} = \sqrt{\frac{0,64 \cdot 0,33 \cdot 10^{-3} + 3 \cdot 10^{-6}}{56 \cdot 10^{-6}}} = 0,5.
 \]
6. Эквивалентная резонансная проводимость контура
 \[
 G_{0E} = m^2 g_{22} + g_K + n^2 g_H = 228,2.
 \]
7. Резонансный коэффициент усиления
 \[
 K_0 = \frac{m \cdot n \cdot |Y_{21}|}{G_{0E}} = \frac{0,8 \cdot 0,5 \cdot 10 \cdot 10^{-3}}{228,2 \cdot 10^{-6}} = 17,5.
 \]
8. Устойчивый коэффициент усиления

\[K_{0УСТ} = 0,45 \sqrt{\frac{Y_{21}}{\omega \cdot C_{3C}}} = 0,45 \sqrt{\frac{10 \cdot 10^{-3}}{6,28 \cdot 2 \cdot 10^{6} \cdot 0,8 \cdot 10^{-12}}} = 14,85. \]

Так как \(K_0 < K_{0УСТ} \), необходимы меры по повышению устойчивости.

Пример 6.3. Резонансный усилитель собран на биполярном транзисторе по схеме с общим эмиттером (рис. 6.5). Коэффициент включения транзистора в контур \(m = 0,5 \). Собственные потери в контуре \(r_K = 5 \) Ом, конструктивная добротность контура \(Q_K = 100 \), полоса пропускания по уровню 3дБ \(2\Delta f = 1 \) кГц. Контур связан с последующим каскадом, входное сопротивление которого \(R_H = 1 \) кОм через коэффициент включения \(n \). Индуктивность контура \(L_K = 100 \) мкГн. Рассчитать резонансный коэффициент усиления и проверить на устойчивость. Параметры транзистора \(|Y_{21}| = 30 \) мСм, \(C_{12} = 6 \) пФ, \(q_{22} = 5 \) мСм.

Решение.
1. Характеристическое сопротивление контура

\[\rho = \frac{Q_K}{r_K} = \frac{100}{5} = 20 \text{ Ом}. \]

2. Резонансная частота контура

\[\rho = 2\pi f_0 L_K, \quad f_0 = \frac{\rho}{2\pi L_K} = \frac{20}{6,28 \cdot 100 \cdot 10^{-6}} = 31,8 \text{ кГц}. \]

3. Эквивалентная добротность контура

\[Q_3 = \frac{f_0}{2\Delta f} = \frac{31,8}{1} = 31,8. \]

4. Резонансное эквивалентное сопротивление контура

\[R_{\omega\rho} = Q_3 \rho = 636 \text{ Ом}. \]

5. Собственная резонансная проводимость контура

\[q_k = \frac{1}{Q_3 \rho} = \frac{1}{100 \cdot 20} \text{ мСм}. \]

6. Коэффициент включения нагрузки в контур

\[m^2 q_{22} = q_k + n^2 q_H, \]

\[n = \sqrt{\frac{m^2 q_{22} - q_k}{q_H}} = \sqrt{(m^2 q_{22} - q_k) R_H} = 0,86. \]

7. Резонансный коэффициент усиления

\[K_0 = m \cdot n \cdot |Y_{21}| R_{\omega\rho} = 0,5 \cdot 0,86 \cdot 30 \cdot 10^{-3} \cdot 636 = 8,2. \]
8. Устойчивый резонансный коэффициент усиления

\[K_{\text{уст}} = 0,45 \frac{Y_{21}}{2\pi f_0 C_{12}} = 0,45 \frac{30 \cdot 10^{-3}}{6,28 \cdot 31,8 \cdot 10^3 \cdot 6 \cdot 10^{-12}} = 75. \]

9. Полная емкость контура

\[C = \frac{L_K}{\rho} = \frac{100 \cdot 10^{-6}}{20} = 5 \text{ мкФ}. \]

Задачи

6.1. Рассчитать УПЧ на полевых транзисторах с одиночными настроенными контурами с резонансной частотой \(f_0 = 30 \) МГц, полосой пропускания \(\Pi = 1 \) МГц и коэффициентом усиления не менее \(250 \cdot 10^3 \). Реализуемая минимальная емкость контуров 30 пФ, собственное затухание \(d_k = 0,01 \). Кругизна характеристики транзистора \(|Y_{21}| = 10 \) мСм. Найти необходимое число каскадов. При решении считать \(|Y_{11}| = 0, |Y_{12}| = 0, |Y_{22}| = 0 \), проводимостью нагрузки последнего каскада пренебречь.

(Ответ: 4 каскада, \(K_{0\Sigma} = 260 \cdot 10^3 \)).

6.2. Рассчитать четырехкаскадный УПЧ на одиночных, настроенных на одну частоту, контурах с частотой настройки \(f_0 = 30 \) МГц и полосой пропускания \(\Pi = 2 \) МГц, используя транзисторы с параметрами: \(|Y_{21}| = 76 \) мСм; \(|Y_{12}| = 0,45 \) мСм; \(q_{11} = 2,9 \) мСм. Затухание контура \(d_k = 0,01 \); индуктивность контура \(L_K = 0,5 \) мГн. Чему равен наибольший коэффициент усиления? При расчете влиянием выходной проводимости транзистора на эквивалентную проводимость контура пренебречь.

(Ответ: \(K_0 = 1785 \)).

6.3. В процессе эксплуатации УПЧ на двух расстроенных контурах параметр \(|Y_{21}| \) одного из транзисторов уменьшился в 1,5 раза (остальные параметры не изменились). Во сколько раз уменьшился коэффициент усиления УПЧ и изменилась ли форма его АЧХ?

(Ответ: в 1,5 раза; АЧХ не изменилась).

6.4. Элементы контуров двухкаскадного УПЧ на полевых транзисторах с двухконтурными полосовыми фильтрами с емкостной связью имеют следующие параметры: собственная добротность более 100, эквивалентная емкость 28 пФ, индуктивность 1 мкГн, каждый контур зашунтирован резистором \(R = 1,3 \) кОм.

а) Найти величину емкости конденсатора связи \(C_{CB} \), при которой обеспечивается наиболее плоская вершина АЧХ усилителя.

(Ответ: \(C_{CB} = 4,75 \) пФ).
б) Во сколько раз нужно изменить C_{CB}, чтобы сохранить прежнюю форму АЧХ, если сопротивление резистора R увеличить в 1,5 раза? Во сколько раз при этом изменится резонансный коэффициент усиления, полоса пропускания и коэффициент прямоугольности $K_{\text{пол,1}}$?

(Ответ: C_{CB} уменьшится в 1,6 раза; полоса уменьшится в 1,5 раза; K_0 возрастет в 2,25 раза; $K_{\text{пол,1}}$ не изменится).

6.5. На входе РПУ амплитудно-модулированного сигнала присутствует полезный сигнал с шириной спектра 10 кГц и помеха (сигнал соседнего канала, отстроенный на 10 кГц). Отношение амплитуд несущих полезного сигнала и помехи на входе РПУ равно 0,3, а на выходе должно быть не менее 3. Какой тип УПЧ при минимальном числе каскадов и АЧХ формы В следует применить в этом РПУ для получения необходимой избирательности по помехе?

(Ответ: трехкаскадный УПЧ с полосовыми двухконтурными фильтрами при критической связи).

6.6. Возможно ли в УПЧ с одиночными, настроенными в резонанс контурами и полосой пропускания 10 кГц обеспечить избирательность по соседнему каналу ($\Delta f = 10$ кГц), равную 20 дБ?

(Ответ: нет, так как $K_{\text{пол,1MIN}} = 2,6$).

6.7. Во сколько раз изменится полоса пропускания двухконтурного УПЧ на полевых транзисторах с одиночными настроенными в резонанс контурами, если ввести расстройку $\xi_0 = 1$, сохранив прежнее значение коэффициента усиления за счет изменения эквивалентной добротности контуров?

(Ответ: увеличится в 1,56 раза).

6.8. Можно ли получить выигрыш в усилении, если от УПЧ на биполярных транзисторах с одиночными настроенными в резонанс контурами перейти к двухконтурным УПЧ на $\xi_0 = 1$, сохранив прежней полосу пропускания, при условии, что в обоих случаях эквивалентная проводимость контура определяется только трансформированной входной проводимостью следующего каскада, а выходная проводимость транзистора пренебрежимо мала? При расчете считать, что усилитель работает устойчиво.

(Ответ: выигрыш в усилении при $n = 2$ составит 1,13 раз; при $n = 4 – 1,8$ раза; при $n = 6 – 2,7$ раза).

6.9. В четырехкаскадном УПЧ на расстроенных “двойках” увеличили обобщенную расстройку ξ от 1 до $\xi_{\text{Опт}}$, когда АЧХ УПЧ двугорбая с провалом до 3 дБ на резонансной частоте. Полоса пропускания сохранилась прежней. Во сколько раз изменился при этом коэффициент усиления резонансного усилителя? При решении считать, что эквивалентная проводимость контуров усилителя определяется трансформированной входной проводимостью следующего каскада. Усилитель работает устойчиво. (Ответ: увеличится в 1,1 раза).
6.10. Рассчитать усилитель промежуточной частоты на полевых транзисторах с резонансной частотой 30 МГц, полосой пропускания 10 МГц и коэффициентом усиления не менее 100. Минимальная емкость контуров 30 пФ, собственное затухание контуров \(d_K = 0,01 \). Крутизна характеристики транзистора \(|Y_{21}| = 10 \) мСм. В УПЧ какого вида и при каком количестве каскадов можно реализовать заданный коэффициент усиления? (При решении принять \(|Y_{11}| = 0, |Y_{12}| = 0 \)).

(Ответ: четыре каскада с параллельно расстроенными контурами при \(\xi = 1 \)).

6.11. В усилителе, рассчитанном в задаче 6.1, полевые транзисторы заменили на биполярные с параметрами: \(q_{11} = 4,35 \) мСм, \(|Y_{21}| = 20 \) мСм. Определить резонансный коэффициент усиления при проводимости нагрузки последнего каскада, равной 4,35 мСм. Усилитель работает устойчиво. (Ответ: \(K_0 = 41500 \)).

6.12. Сколько каскадов должен иметь полосовой усилитель, чтобы при расстройке на 10 кГц обеспечить избирательность не хуже 60 дБ. Усилитель настроен на частоту 455 кГц. Каскады двухконтурные, с трансформаторной связью, эквивалентная добротность контуров \(Q_3 = 100 \), параметр связи 0,9.

6.13. Определить количество одноконтурных каскадов, необходимое для обеспечения избирательности не хуже 60 дБ при отстройке от резонансной частоты 455 кГц на 10 кГц, \(Q_3 = 100 \).

6.14. Биполярный транзистор на частоте 30 МГц имеет следующие \(Y \) параметры: \(q_{11} = 7 \) мСм, \(g_{11} = 5 \) мСм, \(|Y_{21}| = 30 \) мСм, \(q_{22} = 0,7 \) мСм, \(g_{22} = 1,2 \) мСм. Какой можно получить наибольший коэффициент усиления четырехкаскадного УПЧ с настроенными в резонанс контурами, если \(P_{0,7} = 3 \) МГц, собственная добротность контуров \(Q = 100 \), сумма емкостей: а) \(C_K + C_M = 25 \) пФ; б) \(30 \) пФ? Продвигимость нагрузки \(Y_H = q_{11} + jb_{11} \). Считать, что усилитель работает устойчиво.

6.15. По условиям предыдущей задачи найти наибольший коэффициент усиления УПЧ с параллельно расстроенными контурами и АЧХ формы В.

(Ответ: В обоих случаях – режим оптимального согласования и \(K_0 = 325 \)).

6.16. По условиям задачи 6.14 рассчитать наибольший коэффициент усиления УПЧ с двухконтурными полосовыми фильтрами и АЧХ формы В, если емкости контуров с учетом емкости монтажа одинаковы и равны \(C_{K1}+C_{M}=C_{K2}+C_{M}=35 \) пФ.

(Ответ: Режим оптимального согласования не реализуется. В режиме согласования \(K_0 = 1210 \)).

6.17. Каскады четырехкаскадного УПЧ с настроенными в резонанс контурами и четырехкаскадного УПЧ с параллельно расстроенными контурами и АЧХ формы В работают в режиме оптимального согласования. Оба усилителя имеют транзисторы одного типа, \(f_{HP} = 30 \) МГц, \(P_{0,7} = 3 \) МГц, \(Q = 100 \). Во сколько раз отличаются коэффициенты усиления этих усилителей?

(Ответ: У усилителя с параллельно расстроенными контурами в 5,4 раза меньше).
6.18. В процессе настройки четырехкаскадного УПЧ с попарно расстроенными контурами уменьшили сопротивление резисторов, шунтирующих контуры, при этом АЧХ изменилась от формы С с провалом до \(-3\) дБ на \(f_{\text{пр}}\) до формы В, а частоты настройки не изменились. Во сколько раз изменились полоса пропускания и коэффициент усиления УПЧ?
(Ответ: Полоса уменьшилась в 1,8 раза; коэффициент усиления уменьшился в 1,36 раза).

6.19. В 4-каскадном УПЧ на биполярных транзисторах с одиночными настроенными в резонанс контурами расширили полосу пропускания в два раза, увеличив коэффициенты включения последующих каскадов на контуры. Во сколько раз изменился коэффициент усиления УПЧ? Считать, что эквивалентная проводимость контуров усилителя определяется трансформированной входной проводимостью последующего каскада, а проводимость нагрузки последнего каскада равна \(q_{11}\)?
(Ответ: уменьшилась в \(2\) раз).

6.20. Сколько потребуется двухконтурных полосовых фильтров и каскадов УПЧ для реализации АЧХ в форме В с полосой пропускания 10 кГц на \(f_{\text{пр}} = 465\) кГц с ослаблением соседнего канала не менее 25 дБ? Найти добротность контуров фильтра.
(Ответ: 4 фильтра, 3 каскада УПЧ; \(Q = (2...3)\).)

6.21. В УПЧ с двухконтурными полосовыми фильтрами коэффициент связи \(K_{CB}\) между контурами должен быть по конструктивным соображениям не менее 0,1. Найти максимально допустимое число каскадов УПЧ, если \(f_{\text{пр}} = 60\) МГц и АЧХ формы В.
(Ответ: не более трех каскадов).

6.22. В четырехкаскадном УПЧ с АЧХ формы В на частоту 9,5 МГц и два – на 10,5 МГц. На какие частоты нужно настроить контуры этого УПЧ при реализации АЧХ формы С с провалом до -3 дБ на \(f_{\text{пр}}\) при сохранении прежней полосы пропускания УПЧ?
(Ответ: 9,58 и 10,42 МГц).

6.23. Можно ли реализовать двухкаскадный УПЧ с двухконтурными полосовыми фильтрами с АЧХ формы В на \(f_{\text{пр}} = 465\) кГц, полосой пропускания 10 кГц, добротностью контуров \(Q = 53\)?
(Ответ: нет, так как \(d = d_\lambda\)).

6.24. Четырехкаскадный УПЧ имеет полосу пропускания \(\Pi = 1\) МГц на \(f_{\text{пр}} = 30\) МГц. Для увеличения избирательности предлагается попарно расстроить контуры и получить АЧХ формы С с провалом до -3 дБ на \(f_{\text{пр}}\). Осуществимо ли это предложение, если добротность контуров \(Q = 50\)?
(Ответ: нет, так как \(d > d_\lambda\)).
6.25. Определить частоты настройки контуров четырехкаскадного УПЧ с попарно расстроенными контурами: \(f_{HP} = 10 \text{ МГц}, \Pi = 0,1 \text{ МГц} \) для АЧХ формы В и С при провале -3 дБ на промежуточной частоте.

(Ответ: для АЧХ формы В: 9,56 и 10,44 МГц; для АЧХ формы С: 9,63 и 10,37 МГц).

6.26. Рассчитать ослабление при расстройке 10 кГц, обеспечиваемое четырехкаскадным УПЧ с двумя связанными контурами при полосе пропускания 9 кГц на \(f_{HP} = 110 \text{ кГц} \).

(Ответ: 28 раз).

6.27. Найти эквивалентное затухание контуров шестикаскадного УПЧ с расстроенными парами контуров при критической начальной расстройке (АЧХ формы В), если \(f_0 = 8,4 \text{ МГц} \); полоса пропускания УПЧ 0,2 МГц?

(Ответ: 0,0234).
7 ЧАСТОТНЫЕ И ФАЗОВЫЕ ДЕТЕКТОРЫ

Одна из возможных схем балансного частотного детектора (ЧД) с двумя связанными, одинаково настроенными контурами показана на рис. 7.1. Детекторная характеристика такого ЧД

\[U_z = |Y_{21}| R_3 \cdot U \cdot K_D \cdot \psi(\xi, \beta), \]

где \(K_D \) – коэффициент передачи амплитудного детектора на диодах \(D_1 \) и \(D_2 \); \(R_3 \) – эквивалентное сопротивление одного контура; \(\psi(\xi, \beta) \) – функция, график которой приведен на рис. 7.2; \(\xi \) – обобщенная расстройка; \(\beta = K_{CB} \cdot Q_3 \) – фактор связи; коэффициент связи между двумя контурами \(K_{CB} = N/\sqrt{L_1 L_2} \).

\[\text{Рис. 7.1. Балансный частотный детектор} \]

Наибольшая линейность детекторной характеристики получается при \(\beta = 2 \). Крутизна детекторной характеристики ЧД на переходной частоте рассчитывается следующим образом:

\[S_D = \frac{K_D |Y_{21}| U}{C_{K_3} \Pi^2} \phi(\beta), \]

где \(\Pi_p = \beta \cdot \Pi \) – раствор детекторной характеристики (интервал частот между ее экстремумами); \(\Pi \) – полоса пропускания отдельного контура; \(C_{K_3} \) – эквивалентная емкость контура; \(Y_{21} \) – крутизна транспорта УПЧ; \(\phi(\beta) \) – функция, график которой приведен на рис. 7.3. Если поддерживать полосу пропускания контуров \(\Pi \) постоянной, то при \(\beta = 0,85 \) крутизна достигает максимального значения

\[S_{D\text{MAX}} = 0,144 \frac{K_D |Y_{21}|}{C_{K_3} \Pi^2}. \]

При расчете и настройке ЧД необходимо учитывать, что контуры шунтируются амплитудными детекторами в разной степени: первый контур шунтируется сопротивлением \(R_{ВХ}/2 \), а второй – сопротивлением \(2 \cdot R_{ВХ} \). Здесь \(R_{ВХ} \) – входное сопротивление каждого амплитудного детектора.

135
Частотные детекторы, как правило, требуют включения на входе амплитудного ограничителя. Исключение составляет дробный детектор или детектор отношений (рис. 7.3).

Рассмотрим пример расчета дробного детектора, выполненного на интегральной схеме типа К2ДС224, по следующим исходным данным: индекс модуляции $m_{чм} = 3$; напряжение на вторичной обмотке трансформатора $U_2 = 400$ мВ; промежуточная частота $f_{ПР} = 10,7$ МГц; входное сопротивления усилителя низкой частоты $R_{вх,УНЧ} = 5$ кОм; коэффициент нелинейных искажений $K_t = 1%$; максимальная частота модуляции $F_{max} = 100$ кГц.
1. Определяем входное сопротивление детектора отношений \(R_{ВХ,Д} \). Задаем \(R_1 = R_2 = 100 \) кОм (для ИС типа К2ДС224). Используем экспоненциальную аппроксимацию характеристики диода и принимаем \(I_0 = 3 \) мкА, \(a = 29 \) В\(^{-1}\). Для \(U_2 = 400 \) мВ по графикам находим \(R_{ВХ,Д} = 4,5 \) кОм (рис. 7.4).

Рис. 7.4. К определению входного сопротивления детектора отношений

2. Вычисляем значения коэффициентов передачи детектора \(K_Д \) и \(K_{ДΩ} \) по графикам (рис. 7.5, 7.6): \(K_{ДΩ} = 0,57; K_Д = 0,52 \).

Рис. 7.5. К определению \(K_{ДΩ} \)
Рис. 7.6. К определению \(K_Д \)

3. Для заданной величины коэффициента нелинейных искажений \(K_Г = 1\% \) находим \(\eta_Д \) при максимально возможном значении \(q = 0,6 \) (рис. 7.7).

4. Определяем максимальную девиацию частоты сигнала

\[
\Delta f_{чМ} = m_{чМ} \cdot F_{макс} = 3 \cdot 100 = 300 \text{ кГц}.
\]

5. Вычисляем рабочую полосу частотной характеристики дробного детектора

\[
\Delta F_Д = \frac{2 \Delta f_{чМ}}{q} = \frac{2 \cdot 300}{0,6} = 1000 \text{ кГц}.
\]
6. Находим коэффициент связи

\[K = \frac{\Delta F_D}{f_{IPP}} = \frac{1000}{10.7 \cdot 10^3} = 0,094. \]

7. Определяем затухание нагруженных контуров

\[d = \frac{K}{\eta_D} = \frac{0,094}{3} = 0,031. \]

8. Принимаем затухание нагруженных контуров \(d_H = 0,01 \).

9. С учетом равенства индуктивностей \((L_1 = L_2) \) получаем значения \(C_1 \) и \(C_2 \)

\[C_1 = C_2 = \frac{1}{\omega_{IPP} \cdot R_{BX,D} \cdot (d - d_H)} = \frac{1}{2\pi \cdot 10.7 \cdot 10^6 \cdot 4,5 \cdot 10^3 \cdot 0,021} = 158 \text{ пФ}. \]

10. Рассчитываем \(L_1 \) и \(L_2 \)

\[L_1 = L_2 = \frac{1}{(2\pi f_{IPP})^2 C_1} = \frac{1}{(6,28 \cdot 10.7 \cdot 10^6)^2 \cdot 158 \cdot 10^{-12}} = 8,9 \text{ мкГн}. \]

11. Находим максимальный коэффициент амплитудной модуляции

\[m_{D_{max}} = \frac{\sqrt{4 + \eta_D^2 (1 + 2q)^2} - \sqrt{4 + \eta_D^2 (1 - 2q)^2}}{\sqrt{4 + \eta_D^2 (1 + 2q)^2} + \sqrt{4 + \eta_D^2 (1 - 2q)^2}} = 0,56. \]
12. Определяем напряжение на выходе детектора отношений

\[
U_{Вых} = \frac{U_2 \cdot K \cdot m_{max} \cdot 2 \cdot R_{Вых,УНЧ}}{2 \cdot R_{Вых,УНЧ}} + R_1 = 64 \text{ мВ.}
\]

13. Вычисляем общий коэффициент передачи частотного детектора

\[
K = \frac{K \cdot \eta^2 \cdot \Delta f_{ЧМ}}{\Delta F_D (1 + \eta^2) \sqrt{4 + \eta^2}} = 0,52 \cdot 9 \cdot 300 \cdot 10^6 \cdot 1000 \cdot 10^3 \cdot 10^2 \cdot 13 = 0,039.
\]

На рис. 7.8 показана схема балансного фазового детектора (ФД), детекторная характеристика которого определяется следующим образом:

\[
U = K_D \left(\sqrt{U_m^2 + 0,25U_m^2} + U_m \cdot U_{mОП} \cdot \cos \varphi - \sqrt{U_m^2 + 0,25U_m^2} - U_m \cdot U_{mОП} \cdot \cos \varphi \right),
\]

где \(K_D\) – коэффициент передачи амплитудного детектора; \(U_m\) – амплитуда сигнала; \(U_{mОП}\) – амплитуда опорного напряжения; \(\varphi\) – разность фаз между напряжениями сигнала и опорного генератора.

![Рис. 7.8. Балансный фазовый детектор](attachment:image.png)

Все фазовые детекторы являются когерентными, строятся с использованием перемножителей частоты и требуют обязательного опорного напряжения.

Основные требования, предъявляемые к ФД:

1. Высокая крутизна статической детекторной характеристики

\[
S_{\phi_D} = \frac{d \left(\frac{U_{Вых}}{U_{Вых}} \right)}{d \varphi(t)}. \]

2. Линейность нормированной статической детекторной характеристики

\[
\frac{U_{Вых}}{U_{Вых}} = \Phi \left[\varphi(t) \right].
\]
Особенности балансного ФД:
1. Одно из напряжений должно подаваться на диоды в фазе, другое — в противофазе.
2. Для правильной работы ФД безразлично, к какой обмотке трансформатора подводить опорное напряжение.
3. Если амплитуды $U_{мC}$ и $U_{мОП}$ различны, например $U_{мC} < U_{мОП}$, то входное напряжение пропорционально амплитуде наименьшего из двух напряжений, а его зависимость от фазового сдвига имеет вид косинусоиды $$U_{Вых} \approx 2U_{мC} \cdot K_D \cdot \cos \phi(t).$$

Примеры решения задач

Пример 7.1. Найти параметры частотного детектора на двух связанных, одинаково настроенных контурах (рис. 7.9) при следующих исходных данных: $f_{ПР} = 6,5$ МГц; $\Delta f_{MAX} = 75$ кГц; $F_{В} = 12$ кГц, $d = 0,01$. Следующий каскад имеет входное сопротивление $R_{ВХ} = 2$ кОм и входную емкость $C_{ВХ} = 200$ пФ.

Рис. 7.9. К примеру 7.1

Решение.
1. Ширина полосы пропускания колебательных контуров должна удовлетворять неравенству
$$\Pi_{ЧД} \geq 3f_{\max}, \quad \Pi_{ЧД} \geq 3 \cdot 75 \cdot 10^3 \text{ Гц.}$$

2. Выбираем параметр связи между контурами в пределах 1…4. Принимаем $\eta = 1,6$.

3. Рассчитываем эквивалентное затухание первого контура при двух одинаковых связанных контурах
$$d_{Э1} = d_1(1 + \eta^2) = 0,01(1 + 1,6^2) = 0,0356.$$

4. Вычисляем полосу пропускания колебательных контуров
$$\Pi_{ЧД} = d_{Э1} \cdot \eta \cdot f_{ПР} = 0,0356 \cdot 1,6 \cdot 6,5 \cdot 10^6 = 0,37 \cdot 10^6 \text{ Гц,}$$
что удовлетворяет неравенству в пункте 1.
5. Определяем эквивалентную емкость контуров

\[C_\od = \frac{3 \cdot 10^{-4}}{f_\text{пр}} = \frac{3 \cdot 10^{-4}}{6,5 \cdot 10^6} = 46 \cdot 10^{-12} \Phi. \]

6. Рассчитываем индуктивность катушек колебательных контуров

\[L = \frac{1}{\omega_\text{пр}^2 C_\od} = \frac{1}{(6,28 \cdot 6,5 \cdot 10^6)^2 \cdot 46 \cdot 10^{-12}} = 13,2 \cdot 10^{-6} \text{ Гн.} \]

7. Находим собственную проводимость колебательного контура

\[g = \frac{d}{\rho} = d \cdot \omega_\text{пр} \cdot C_\od = 0,01 \cdot 6,28 \cdot 6,5 \cdot 10^6 \cdot 46 \cdot 10^{-12} = 1,85 \cdot 10^{-5} \text{ См.} \]

8. Выбираем \(R_\Phi = R_\text{ВХ} = 2 \text{ кОм}. \)

9. Определяем емкость фильтра

\[C_\Phi = \frac{10^{-4}}{R_\Phi} - C_\text{ВХ} = \frac{10^{-4}}{2 \cdot 10^{-3}} - 200 \cdot 10^{-12} = 5 \cdot 10^{-8} \Phi. \]

10. Выбираем диоды с параметрами \(S = 10 \text{ мСм}, C_\text{Д} = 1 \text{ пФ}. \)

11. Рассчитываем внутреннее сопротивление диода

\[R_1 = \frac{1}{S} = \frac{1}{10^{-2}} = 100 \text{ Ом}. \]

12. Находим входное сопротивление следующего каскада с учетом \(R_\Phi \)

\[R_\text{ВХ} = 4 \text{ кОм}. \]

13. Выбираем нагрузочные сопротивления диодов из условия отсутствия нелинейных искажений

\[R_1 = R_2 \approx (0,8 \ldots 1,2) \cdot (R_\text{ВХ} + R_\Phi), \quad R_1 = R_2 = 1,1 \cdot (2 \cdot 10^3 + 2 \cdot 10^3) = 4,3 \text{ кОм}. \]

14. Вычисляем входное сопротивление детектора

\[R_{\text{ВХ,Д}} = 0,5 \cdot R_1 = 0,5 \cdot 4300 = 2150 \text{ Ом}. \]

15. Рассчитываем коэффициент включения детекторов в контур из условия, что эквивалентное затухание второго контура с учетом действия обоих детекторов

\[d_\od = d \left(1 + 2 m^2 \frac{g}{g \cdot R_{\text{ВХ,Д}}} \right) \leq 1,2 d. \]

Полагая \(d_\od = 1,2 d, \) получим

\[m \leq \sqrt{0,5 \cdot R_{\text{ВХ,Д}} \left(\frac{d_\od}{d} - 1 \right)} = \sqrt{0,5 \cdot 2150 \cdot 1,85(1,2 - 1)} = 0,06. \]

16. Определяем коэффициент передачи частотного детектора, принимая \(K_\text{Д} = 0,84, \)

\[K_{\text{ДД}} = 0,35 \cdot m \cdot K_\text{Д} \frac{2 \cdot \Delta f_{\text{макс}}}{f_{\text{ДД}}} = 0,35 \cdot 0,06 \cdot 0,84 \frac{2 \cdot 75 \cdot 10^3}{37 \cdot 10^4} = 0,0071. \]
17. Находим емкости конденсаторов, шунтирующих нагрузочные резисторы, при $m_{\text{max}} = 0,1$

$$C_1 = C_2 \leq \frac{\sqrt{1-m_{\text{max}}^2}}{2\pi F_s R m_{\text{max}}} = \frac{\sqrt{1-0,1^2}}{6,28\cdot12\cdot10^3 \cdot 4,3\cdot10^3 \cdot 0,1} = 31\cdot10^{-9} \text{Ф.}$$

Задачи

7.1. Как изменится вид детекторной характеристики ЧД со связанными одинаково настроенными контурами (рис. 7.1), если в катушке первого контура изменить направление витков?

(Ответ: Изменится знак крутизны характеристики).

7.2. Схему ЧД (рис. 7.1) изменим, запитав транзистор со стороны эмиттера. Так как постоянное напряжение на коллекторе равно нулю, конденсатор C_3 не нужен. Новая схема показана на рис. 7.10. При настройке схемы вместо S-образной детекторной характеристики получилась характеристика, подобная АЧХ резонаторного контура. В чем причина неправильной работы ЧД?

(Ответ: Нагрузка детектора на диоде D_2 закорочена).

7.3. Изменится ли детекторная характеристика ЧД (рис. 7.1) и почему, если: а) разорвать провод между точками а и б ; б) разорвать провод между точками а и б и закоротить дроссель D_r. Считать, что $R_1 = R_2 << R_{KЭ}$.

(Ответ: а) не изменится; б) не изменится).

7.4. В ЧД (рис. 7.1) резисторы $R_1 = R_2 = 100$ кОм. Диоды D_1 и D_2 имеют линейно-ломанную ВАХ с крутизной 5 мА/В и 10 мА/В соответственно. Симметрична ли детекторная характеристика ЧД?

(Ответ: симметрична).

7.5. Определить параметры связанных контуров ЧД (M и Q_3, рис. 7.1), обеспечивающие раствор детекторной характеристики 1 МГц, если: а) крутизна детекторной характеристики максимальна; б) линейность детекторной характе-
7.4. значения текторной контурами \(t \) передачи (рис. 7.1), если требуется увеличить в 1,4 раза раствор детекторной характеристики и при этом: а) изменить ее крутизну; б) не изменять значения ее максимумов? Исходное значение фактора связи \(\beta = 1 \).

(Ответ: а) увеличить \(Q_\beta \) в 1,13 раза и \(M - \) в 1,41 раз; б) уменьшить \(Q_\beta \) в 1,41 раз, увеличить \(L_1 \) и \(L_2 \) в 1,41 раза, уменьшить \(C_1 \) и \(C_2 \) в 1,41 раза и увеличить \(M \) в 2 раза).

7.7. Рассчитать крутизну и раствор детекторной характеристики ЧД (рис. 7.1) при входном сигнале \(U = 1 \text{ мВ} \) и следующих исходных данных: \(|Y_{21}| = 50 \text{ мСм} \); \(L_1 = L_2 = 0,5 \text{ мкГн} \); \(C_1 = C_2 = 50 \text{ пФ} \); \(R_1 = R_2 = 50 \text{ кОм} \); \(Q_\beta = 40 \); \(M = 0,5 \text{ мкГн} \). Вторичный контур зашунтирован резистором 16,7 кОм. Входное сопротивление амплитудного детектора принять равным \(R_i/2 \), а его \(K_D = 1 \).

(Ответ: 0,36 В/МГц; 1 МГц).

7.8. Построить график зависимости нормированной детекторной характеристики ФД (рис. 7.8) при: а) \(U_{mOP} = 20U_{mC} \); б) \(U_{mOP} = 2U_{mC} \). Принять \(K_D = 1 \).

(Ответ: а) \(\Phi(\varphi) \approx \cos \varphi \); б) \(\Phi(\varphi) = \sqrt{2} \cos \left(\frac{\varphi}{2} + \frac{\pi}{4} \right) \).

7.9. Изобразить эпюры напряжения \(U_s(t) \) на выходе ФД по схеме на рис. 7.8 при: а) \(f_c = f_{OP} \); б) \(f_c \neq f_{OP} \). Считать при этом, что \(U_{mOP} \gg U_{mC} \).

(Ответ: а) \(U_s(t) = \cos \varphi \); б) \(U_s(t) = \cos [(f_c - f_{OP}) t + \varphi_0] \), где \(\varphi_0 \) – начальная разность фаз напряжений \(U_c(t) \) и \(U_{OP}(t) \).

7.10. Определить сопротивления нагрузочных резисторов и коэффициент передачи частотного детектора с двумя связанными одинаково настроенными контурами по следующим исходным данным: \(d = 0,01 \); \(f_{HP} = 6,5 \text{ МГц} \); \(\Delta f_{max} = 75 \text{ кГц} \); \(F_B = 12 \text{ кГц} \). Следующий каскад имеет: \(R_{BX} = 2 \text{ кОм} \); \(C_{BX} = 200 \text{ пФ} \); \(R_\varphi + R_{BX} = 6 \cdot 10^5 \text{ Ом} \); \(\Pi_{Q_D} = 225 \text{ кГц} \).

(Ответ: \(R_1 = R_2 = 300 \text{ кОм} \); \(K_D = 0,98 \); \(K_{Q_D} = 0,23 \).)

7.11. Найти выигрыш в отношении сигнал/помеха при переходе от амплитудной модуляции к частотной в случае действия шумовой помехи, если максимальная девиация частоты \(\Delta f_{max} = 150 \text{ кГц} \), а верхняя частота модуляции \(F_B = 10 \text{ кГц} \).

(Ответ: 26 раз).
Контрольные вопросы

1. Параметры, характеризующие частотно-модулированный (ЧМ) сигнал.
2. Характер и ширина спектра ЧМ сигнала при различных значениях индекса модуляции.
3. Отличие спектра ЧМ сигнала от спектра амплитудно-модулированного (АМ) сигнала.
4. Нарисовать структурную схему приемника ЧМ сигнала и объяснить назначение ее элементов.
5. Форма детекторных характеристик идеального детектора и реального детектора ЧМ сигнала.
6. Параметры детектора ЧМ сигнала.
7. Нарисовать схему частотного детектора на двух связанных одинаково настроенных контурах.
8. Схема и принцип работы детектора ЧМ сигнала с двумя расстроенными контурами.
9. Схема и принцип работы дробного детектора. Преимущества и недостатки.
10. Назначение корректирующего фильтра на выходе детектора ЧМ сигнала.
11. Почему и при каких условиях в детекторе ЧМ сигнала можно получить лучшее ослабление действия помехи, чем в детекторе АМ сигнала?
8 ШУМОВЫЕ ХАРАКТЕРИСТИКИ РАДИОПРИЕМНЫХ УСТРОЙСТВ

8.1 Шумы резисторов

За счет хаотического теплового движения свободных электронов на концах проводника возникает случайная флуктуационная разность потенциалов. Математически анализ движения свободных электронов в проводнике показывает, что средний квадрат (или квадрат действующего значения) такого напряжения определяется формулой Найквиста

\[\frac{U_{th}^2}{R} = 4kT \int_{f_1}^{f_2} \Re(z)\, df = 4kT R \Pi, \quad (8.1) \]

где \(k = 1,38 \cdot 10^{-23} \) – постоянная Больцмана; \(T \) – абсолютная температура проводника в градусах Кельвина; \(f_1 \) и \(f_2 \) – границные частоты, в пределах которых измеряется флуктуационное напряжение; \(\Re(z) \) – вещественная часть комплексного сопротивления \(z \). Следует отметить, что собственная емкость реального резистора \(C_0 \) уменьшает вещественную часть его сопротивления при повышении частоты

\[\Re(z) = \frac{R}{1 + \omega^2 C_0 R^2}. \quad (8.2) \]

Формула Найквиста справедлива для частот, удовлетворяющих неравенству

\[f \leq \frac{kT}{h}, \quad (8.3) \]

где \(h = 6,62 \cdot 10^{-34} \) Дж/с – постоянная Планка.

В радиоприемных устройствах широко применяется параллельный колебательный контур, активная составляющая сопротивления которого

\[R(\xi) = \frac{R_{0E}}{1 + \xi^2}, \quad (8.4) \]

где \(\xi = \frac{1}{d_3} \left(\frac{f - f_0}{f_0} \right) \) – обобщенная расстройка, соответствующая абсолютной расстройке \(\Delta f = f - f_0 \); \(R_{0E} = \rho d_3 \) – резонансное активное сопротивление параллельного контура; \(\rho = \frac{1}{\omega_0 C} = \omega_0 L = \sqrt{L/C} \) – характеристическое сопротивление контура; \(d_3 \) – эквивалентное затухание контура; \(f_0 \) – резонансная частота.

Средний квадрат шумового напряжения контура

\[\frac{U_{th}^2}{R} = 4kT \int_{0}^{\infty} \frac{R_{0E}}{1 + \xi^2} \, df = 4kT R_{0E} \Pi_{\text{эфф}}. \quad (8.5) \]
Анализ показывает, что эффективная или шумовая полоса пропускания одиночного колебательного контура:

$$\Pi_{\text{ЭФ}} = 0,5 \pi \cdot \Pi_{K},$$

где \(\Pi_{K} = d_{3} \cdot f_{0} \) – полоса пропускания одиночного колебательного контура, определяемая по уровню 0,7 (3 дБ).

В общем случае для любой резонансной системы справедливо

$$\Pi_{\text{ЭФ}} = B \cdot \Pi_{K},$$

где \(B \) – коэффициент, зависящий от сложности избирательной системы.

Чем сложнее избирательная система, тем ближе \(B \) к 1. В первом приближении для трех- и четырехконтурной системы \(B \approx 1,1 \).

Для шумящего резистора справедливы эквивалентные шумовые схемы: источник шумового напряжения (рис. 8.1 а) и источник шумового тока (рис. 8.1 б). Здесь \(R \) или \(G = 1/R \) полагаются нешумящими, а \(U_{\text{ш}}^{2} = i_{\text{ш}}^{2} \cdot R^{2} = 4kTR\Pi_{\text{ЭФ}} \).

![Рис. 8.1. Эквивалентная схема шумящего резистора](image)

При последовательном соединении \(n \) резисторов их эквивалентная шумовая схема соответствует рис. 8.1 а с параметрами

$$R = R_{1} + R_{2} + R_{3} + \ldots + R_{n} = \sum_{i=1}^{n} R_{i},$$

$$U_{\text{ш}}^{2} = U_{\text{ш1}}^{2} + U_{\text{ш2}}^{2} + U_{\text{ш3}}^{2} + \ldots + U_{\text{шп}}^{2} = 4k\Pi_{\text{ЭФ}} \sum_{i=1}^{n} T_{i}R_{i}.$$ (8.9)

Для упрощения оценки шумовых свойств схем с большим числом источников шума оперируют понятием эффективной температуры схемы \(T_{3} \). Она равна такой температуре, до которой нужно нагреть все резисторы, чтобы результатирующее шумовое напряжение схемы было тем же. Таким образом, можно записать

$$U_{\text{ш}}^{2} = 4kT_{3}R\Pi_{\text{ЭФ}}.$$ (8.10)
Следовательно,

\[T_3 = \frac{\sum_{i=1}^{n} T_i R_i}{\sum_{i=1}^{n} R_i} \] \hspace{1cm} \text{(8.11)}

Отсюда, например, для двух последовательно соединенных резисторов \(R_1 \) и \(R_2 \)

\[T_3 = \frac{R_1}{R_1 + R_2} T_1 + \frac{R_2}{R_1 + R_2} T_2 . \] \hspace{1cm} \text{(8.12)}

При параллельном соединении \(n \) резисторов (проводимостей)

\[\frac{1}{R} = G = \frac{1}{R_1} + \frac{1}{R_2} + \ldots + \frac{1}{R_n} = G_1 + G_2 + \ldots + G_n = \sum_{i=1}^{n} G_i , \] \hspace{1cm} \text{(8.13)}

\[\frac{r}{I^2_{III}} = \frac{r}{I^2_{III1}} + \frac{r}{I^2_{III2}} + \ldots + \frac{r}{I^2_{III}} = 4k \Pi \varphi \sum_{i=1}^{n} T_i G_i , \] \hspace{1cm} \text{(8.14)}

\[\frac{r}{I^2_{III}} = 4k T_{III} \Pi \varphi , \] \hspace{1cm} \text{(8.15)}

где

\[T_{III} = \frac{\sum_{i=1}^{n} T_i G_i}{\sum_{i=1}^{n} G_i} . \] \hspace{1cm} \text{(8.16)}

Для двух параллельно включенных проводимостей

\[T_{III} = \frac{G_1}{G_1 + G_2} T_1 + \frac{G_2}{G_1 + G_2} T_2 , \] \hspace{1cm} \text{(8.17)}

Находит применение и относительная шумовая температура

\[t_{III} = \frac{T_{III}}{T_0} , \] \hspace{1cm} \text{(8.18)}

где \(T_0 = 293 \text{K} \) – комнатная или стандартная шумовая температура.

8.2 Шумы приемной антенны

Приемная антенна обладает сопротивлением потерь \(R_P \), создающим шумовое напряжение \(\dot{U}^2_{III} = 4k T_{III} R_P \Pi \varphi \), сопротивлением излучения \(R_\Sigma \) с эффективной шумовой температурой \(T_\Sigma \) и напряжением \(\dot{U}^2_{III} = 4k T_{III} R_\Sigma \Pi \varphi \). Полное активное сопротивление антенны \(r_A = R_P + R_\Sigma \). Складывая оба шумовых напряжения и полагая их независимыми, получаем полное напряжение шума в антенне

\[\dot{U}^2_{IIIA} = 4k T_A r_A \Pi \varphi , \] \hspace{1cm} \text{(8.19)}
где

\[T_A = \frac{R_H}{r_A} T + \frac{R_\Sigma}{r_A} T_\Sigma, \]

(8.20)

представляет эффективную шумовую температщу антенны.

Для не направленной антенны внешние шумы в основном определяются тепловым излучением поверхности земли и ее атмосферы. Поэтому для такой антенны \(T_\Sigma = T \).

8.3 Шумы транзисторов

Активное сопротивление базы биполярного транзистора генерирует шумовое напряжение

\[U_{\text{ШК}} = 4kT r_{\text{вв}}. \]

(8.21)

Аналогично определяются шумы распределенных активных сопротивлений эмиттера и коллектора. Так как эти сопротивления значительно меньше распределенного сопротивления базы, то учитываются в основном только шумы сопротивления базы.

Флуктуационные токи в коллекторном переходе оказываются почти такими же, как в эмиттерном, и определяются

\[\begin{align*}
\dot{I}_{\text{ШК}}^2 &= 2eI_e, \\
\dot{I}_{\text{шко}}^2 &= 2eI_e = 2eI_ea_0,
\end{align*} \]

(8.22, 8.23)

где \(e = 1,6 \cdot 10^{-19} \) \(\text{Кл} \) – заряд электрона; \(I_K \) и \(I_E \) – токи эмиттера и коллектора соответственно.

Обратные токи коллектора \(I_K \) и эмиттера \(I_E \) в рабочих режимах транзисторов не превышают 0,001...0,01 от основных токов. Их флуктуационные токи соответственно равны

\[\begin{align*}
\dot{I}_{\text{шко}}^2 &= 2eI_{\text{ко}} = 2eI_{\text{вв}}a_0; \\
\dot{I}_{\text{ШЕ}}^2 &= 2eI_{\text{вв}}.
\end{align*} \]

(8.24)

Шумовой ток перераспределения, зависящий от параметра транзистора \(a_0 \), который устанавливает связь между токами эмиттера, базы и коллектора (\(I_B = I_\beta(1-a_0); I_K = a_0I_\beta \)), определяется уравнением

\[\dot{I}_{\text{шко}}^2 = 2eI_\beta a_0 (1-a_0) = \dot{I}_{\text{ШК}}^2. \]

(8.25)

На рис. 8.2 приведена эквивалентная схема транзистора, описывающая его шумовые свойства.
Параметры генераторов \(U_{ШБ} \) и \(I_{ШК} \) определяются уравнениями (8.21) и (8.23), а токи остальных генераторов схемы следующими формулами:

\[
\begin{align*}
\bar{\mathcal{I}}_{Ш1} &= \bar{\mathcal{I}}_{Ш1} \cdot v_1, \\
\bar{\mathcal{I}}_{Ш2} &= \bar{\mathcal{I}}_{Ш2} \cdot v_1, \\
\bar{\mathcal{I}}_{ШK0} &= \bar{\mathcal{I}}_{ШK0} \cdot \xi_1, \\
\bar{\mathcal{I}}_{ШK0} &= \bar{\mathcal{I}}_{ШK0} \cdot (1 + \xi_2),
\end{align*}
\]

где

\[
\xi_1 = (1 - r_b Y_{11}),
\]

(8.26)

(8.27)

Токи генераторов \(I'_{Ш1} \) и \(I''_{Ш1} \), \(I'_{Ш2} \) и \(I''_{Ш2} \) взаимосвязаны, но флукутационный характер каждого из этих токов определяется одним и тем же шумовым током \(I_{Ш1} \) и \(I_{Ш2} \). Поэтому при суммировании они складываются алгебраически с учетом стрелок, определяющих направление их протекания.

Токи остальных генераторов независимы и должны суммироваться по квадратичному закону. По квадратичному закону определяется и полный выходной шумовой ток схемы.

У биполярных транзисторов шумовое сопротивление \(R \) зависит от усилительных свойств, режима питания, способа включения прибора и составляет десятки Ом. При этом относительная шумовая постоянная транзистора \(t_{Ш} \leq 1 \).

В полевых транзисторах основной составляющей являются тепловые шумы канала, характеризующиеся шумовым сопротивлением \(R = (0,6...0,75)/S \), где \(S \) – крутизна сток-затворной характеристики. Дробовой шум тока утечки затвора мал, и его можно не учитывать.

8.4 Коэффициент шума и чувствительность

С целью количественной оценки шумовых свойств радиоприемного устройства используется коэффициент шума \(III \) и шумовая температура, определяемые для линейного тракта РПУ (до детектора).

Рассмотрим линейный шумящий четырехполюсник с входным сопротивлением \(R_{Вх} \) и коэффициентом усиления (передачи) по мощности \(K_p = P_{C,Вых}/P_{C,Вх} \), нагруженный на сопротивление \(R_{Ш} \). Если к его входным зажи-
мам подключен источник сигнала с выходным сопротивлением \(R_G \), являющийся одновременно и источником тепловых шумов с электродвигающей силой \(E_{шир} = 4kT R_G P_{шир} \), то при согласовании источника сигнала со входом четырехполюсника \((R_G = R_{ВХ})\) на входном сопротивлении рассеивается максимальная (номинальная) мощность шумов
\[
P_{шир.ВХ.ном} \equiv \frac{E_{шир}^2}{4R_{ВХ}} = \frac{E_{шир}^2}{4R_G} = kT P_{шир} .
\] (8.29)

При рассогласовании \((R_G \neq R_{ВХ})\) на \(R_{ВХ} \) рассеивается меньшая шумовая мощность
\[
P_{шир.ВХ} = \eta kT P_{шир} ,
\] (8.30)
где коэффициент рассогласования
\[
\eta = \frac{P_{шир.ВХ}}{P_{шир.ВХ.ном}} = \left(\frac{R_G + R_{ВХ}}{4R_G R_{ВХ}} \right) .
\] (8.31)

В четырехполюснике сигнал и шумы усиливаются (ослабляются) в \(K_P \) раз. Если бы четырехполюсник был идеальным (несущим), то на сопротивлении нагрузки \(R_H \) рассеивалась бы только мощность шумов источника сигнала, находящегося при температуре \(T \)
\[
P_{шир.ВХ.И} = P_{шир.ВХ} \cdot K_P = \eta kT P_{шир} K_P .
\] (8.32)

В реальном четырехполюснике к этим шумам добавляются его собственные шумы мощностью \(P_{шир.СОБ} \), в результате чего мощность, рассеиваемая на нагрузке, увеличивается \(P_{шир.Вых} = P_{шир.Вых.И} + P_{шир.СОБ} \).

Коэффициент шума показывает, во сколько раз мощность шумов на выходе реального четырехполюсника превышает мощность шумов на выходе нешумящего (идеального) четырехполюсника
\[
\Xi = \frac{P_{шир.Вых}}{P_{шир.Вых.И}} = 1 + \frac{P_{шир.СОБ}}{P_{шир.Вых.И}} = 1 + \frac{P_{шир.СОБ}}{\eta kT P_{шир} K_P} .
\] (8.33)

Определяемый таким образом коэффициент шума зависит от шумовых свойств источника сигнала, обусловленных его температурой \(T \), и поэтому не может служить объективной мерой шумовых характеристик четырехполюсника. Для устранения данной неоднозначности принимают шумовую температуру источника сигнала, равную комнатной \(T_0 \). Так как добавление собственных шумов ухудшает отношение сигнал к шуму \((C/\Xi)\) на выходе четырехполюсника \(P_{C.ВыХ}/P_{шир.ВыХ} \), по сравнению с входным \(P_{C.ВыХ}/P_{шир.ВыХ} \), то коэффициент шума можно определить следующим образом:
\[
\Xi = \frac{P_{C.ВыХ}/P_{шир.ВыХ}}{P_{C.ВыХ}/P_{шир.ВыХ}} .
\] (8.34)
Коэффициент шума пассивного четырехполюсника (фидер, входная цепь) в общем случае равен

\[III = \frac{\eta}{K_p} \]

(8.35)

Для идеального нешумящего четырехполюсника \(III = 1 \). В пассивной цепи с потерями \(K_p < 1 \), \(III > 1 \).

Линейный тракт РПУ представляет собой каскадное соединение линейных активных и пассивных четырехполюсников. Поэтому важна оценка общего коэффициента шума РПУ с учетом вклада шумов отдельных каскадов.

Если образующие тракт РПУ четырехполюсники имеют одинаковую шумовую полосу \(II_\text{Ш} \), коэффициент усиления (передачи) по мощности \(K_p_i \), коэффициенты шума \(\eta_i \) и коэффициенты рассогласования \(\eta \), то общий коэффициент шума определяется соотношением

\[III = \frac{\eta_2}{\eta_1} \cdot \frac{II_2 - 1}{K_p_1} + \frac{\eta_3}{\eta_2} \cdot \frac{II_3 - 1}{K_p_1 \cdot K_p_2} + K \]

(8.36)

При полном согласовании по входу и выходу и между каскадами \(K_p_1 = K_p_{1\text{HOM}} \), \(K_p_2 = K_p_{2\text{HOM}} \), …, следовательно,

\[III = \frac{\eta_2}{\eta_1} \cdot \frac{II_2 - 1}{K_p_{1\text{HOM}}} + \frac{\eta_3}{\eta_2} \cdot \frac{II_3 - 1}{K_p_{1\text{HOM}} \cdot K_p_{2\text{HOM}}} + K \]

(8.37)

Чтобы оценить шумовые свойства малошумящих четырехполюсников, у которых коэффициенты шума близки к единице, удобнее использовать эквивалентную шумовую температуру

\[T_{III} = (III - 1) \cdot T_0 \]

(8.38)

показывающую, насколько должна быть повышена абсолютная температура сопротивления источника сигнала \(R_f \), подключенного к входу идентичного, но не шумящего четырехполюсника, чтобы мощность шумов на его выходе равнялась мощности шумов на выходе реального четырехполюсника.

Шумовая температура четырехполюсника в отличие от коэффициента шума не зависит от шумовой температуры источника сигнала. На основании формулы (8.36) справедливы следующие выводы:

– результирующий коэффициент шума многокаскадного линейного тракта приема в основном определяется его первым каскадом;

– для получения малого результирующего коэффициента шума необходимо иметь не только малый коэффициент шума первого каскада, но и достаточно большое усиление по мощности.

Значение коэффициента шума РПУ позволяет определить его чувствительность, характеризующую наименьшую входную мощность сигнала \(P_{C,BX} \), при которой ошибки в воспроизведении содержащегося в сигнале сообщения не
превышают заданного уровня. Уровень этих ошибок однозначно связан с коэффициентом различимости

$$D = \frac{P_c}{P_{\text{ши}}},$$

(8.39)

который измеряется на выходе линейного тракта приема. При согласовании ($\eta=1$) чувствительность РПУ по мощности

$$P_{\text{C.BX.MIN}} = \frac{D \cdot P_{\text{ши.вых}}}{K_{p\Phi} \cdot K_P} = kT_0 D \left(\frac{T_A}{T_0} + \frac{\text{Ш}}{K_{p\Phi}} - 1 \right)$$

(8.40)

или

$$P_{\text{C.BX}} = kD (T_A + \text{Ш}).$$

(8.41)

Таким образом, для повышения чувствительности РПУ необходимо следующее:

– увеличение коэффициента передачи фидера $K_{p\Phi}$;
– снижение коэффициента шума РПУ;
– сужение эффективной (шумовой) полосы пропускания;
– снижение относительной шумовой температуры антенны за счет сужения ее диаграммы направленности.

Если активное сопротивление антенны r_A, то в режиме согласования чувствительность РПУ по напряжению в соответствии с (8.40) равна

$$E_{\text{A.MIN}} = \sqrt{4kT_0 T_A D \left(\frac{T_A}{T_0} - 1 + \frac{\text{Ш}}{K_{p\Phi}} - 1 \right)}.$$ (8.42)

Обозначив через Ш шумовую температуру РПУ

$$T_{\text{Ш}} = T_A + T_0 \left(\frac{\text{Ш}}{K_{p\Phi}} - 1 \right),$$

получим из (8.40) и (8.42), соответственно,

$$P_{\text{C.BX.MIN}} = kT_0 D ,$$

(8.43)

$$E_{\text{A.MIN}} = \sqrt{4kT_{\text{Ш}} r_A D} .$$

(8.44)

Задачи

8.1. Определить эффективную температуру и среднеквадратическое (действующее) значение шумового напряжения трех последовательно включенных резисторов $R_1 = 10$ кОм, $R_2 = 20$ кОм, $R_3 = 30$ кОм в эффективной (шумовой) полосе пропускания 10 кГц, если их температуры соответственно равны: 290, 400 и 500 К.

(Ответ: 432 К; 3,8 мкВ).
8.2. Рассчитать эффективную полосу пропускания параллельного колебательного контура, имеющего эквивалентное затухание $d_2 = 0,02$; емкость 250 пФ и индуктивность 10 мГн.
(Ответ: 31,4 кГц).

8.3. Найти действующее значение шумового напряжения контура по данным задачи 8.2.
(Ответ: 4 мкВ).

8.4. Определить действующее значение шумового напряжения в эффективной полосе пропускания 10 кГц на выходе приемной антенны, имеющей следующие параметры: сопротивление потерь 30 Ом, сопротивление излучения 90 Ом, эффективная температура сопротивления излучения 500 К, температура окружающей среды 300 К.
(Ответ: 1,3 мкВ).

8.5. Вычислить коэффициент усиления каскада по мощности, имеющего коэффициент шума 2, чтобы присоединение второго такого же каскада увеличивало коэффициент шума на 10%.
(Ответ: 10).

8.6. Усилительный каскад может иметь максимальное усиление по мощности 20 дБ. При выполнении какого условия добавление второго аналогичного каскада позволит иметь коэффициент шума всего усилителя не более $\frac{11}{9}$?
(Ответ: если коэффициент шума каскада менее $\frac{11}{9}$).

8.7. Для согласования антенны ($R_A = 75$ Ом) с приемником применен аттенюатор (рис. 8.3) из $R_1 = 200$ Ом, $R_2 = 100$ Ом. Определить: коэффициент шума аттенюатора при температуре $T = 293$ К; коэффициент передачи номинальной мощности аттенюатора.
(Ответ: $\eta_{\text{АТТ}} = 13,75; K_{\text{РН}} = 4/55; T_{\text{Ш}} = 4028,7$ К).

8.8. В состав РПУ входят антenna, фидер и приемник. Для повышения чувствительности РПУ фидер охладили, при этом коэффициент потерь фидера стал равным 3 дБ, а шумовая температура 100 К. До какой температуры охлажден фидер?
(Ответ: $T_{\phi} = 100$ К).
8.9. Найти отношение сигнала к шуму на выходе устройства (рис. 8.4).
(Ответ: $P_{Ш/ВХ} = 8,1 \cdot 10^{-15}$ Вт; $P_C/P_{Ш} = 12,4$).

\[
\begin{array}{c}
\text{T} = 293\text{ K} \\
\text{Ш} = 2
\end{array}
\]

Рис. 8.4. К задаче 8.9

8.10. Какой коэффициент передачи номинальной мощности должен иметь первый каскад (рис. 8.5), чтобы результирующая температура шума обоих каскадов была равна 110 К?
(Ответ: $K_{РН} = 5,7$).

\[
\begin{array}{c}
\text{РУЧ} \\
\text{Ш} = 1,2
\end{array} \quad \begin{array}{c}
\text{ПЧ} \\
\text{Ш} = 2
\end{array}
\]

Рис. 8.5. К задаче 8.10

8.11. Во сколько раз отличается чувствительность двух РПУ, обладающих одинаковыми шумовыми полосами, структурные схемы и основные данные которых приведены на рис. 8.6.
(Ответ: $T_{Ш1} = 906\text{ K}; T_{Ш2} = 516\text{ K};$ отношение чувствительности равно 1,75).

8.12. Шумовая температура РПУ равна 30 К. Можно ли улучшить чувствительность приемника введением УРЧ, имеющего шумовую температуру $T_{Ш} = 20\text{ K}$ и коэффициент передачи номинальной мощности $K_{РН} = 10$?
(Ответ: можно, $T_{Ш} = 23\text{ K}$).

8.13. Определить шумовую температуру РПУ, имеющего чувствительности 10^{-19} Вт, для следующих значений параметров входящих в него блоков: шумовая температура антенны $T_a = 100\text{ K}$, физическая температура фидера $T = 293\text{ K}$, коэффициент потерь фидера $L = 1,25$; шумовая полоса $P_{Ш} = 10\text{ Гц}$, коэффициент различимости $D = 2,5$.
(Ответ: $P_{Ш,ВХ} = 4 \cdot 10^{-20}$ Вт; $T_{Ш} = 2,9 \cdot 10^2\text{ K}; T_{Ш,ПР} = 93\text{ K}$).
8.14. Два одинаковых усилителя согласованы между собой и имеют общий коэффициент шума 4 дБ. Определить коэффициент шума одного каскада, если коэффициенты усиления по напряжению и току соответственно равны 5 и 2.

8.15. Рассчитать эффективное значение напряжения собственных шумов на зажимах параллельного колебательного контура в шумовой полосе пропускания 10 кГц, настроенного на резонансную частоту 10,7 МГц, если емкость контура равна 200 пФ, а эквивалентное затухание 0,017. Как изменится напряжение шумов на контуре в той же полосе частот и при том же эквивалентном затухании, если перестроить контур емкостью на частоту 5 МГц?

8.16. Коэффициент шума двухкаскадного усилителя равен 3. Вычислить шумовую температуру первого каскада, если его коэффициент усиления по мощности +3 дБ, а коэффициент шума второго каскада равен 4.

8.17. Какова чувствительность РПУ, если первый каскад имеет коэффициент шума 6 дБ и коэффициент усиления 10 дБ, а у второго каскада коэффициент шума равен 10 дБ? При этом: шумовая температура антены 200 К; полоса пропускания РПУ – 5 МГц; коэффициент передачи фидера 0,95; коэффициент различимости сигнала на выходе линейного тракта РПУ равен 6 дБ.

8.18. Рассчитать эффективное значение результирующего напряжения собственных шумов усилителя, действующего на его коллекторной нагрузке в полосе частот 10 кГц, если крутизна транзистора 20 мА/В, его шумовое сопротивление 500 Ом. Относительная шумовая температура входной проводимости \(t = 2 \); входное сопротивление 1,5 кОм; на входе и выходе включены параллельные колебательные контуры с эквивалентным сопротивлением 1 кОм.

8.19. На вход РПУ подключен эквивалент согласованной антенны, при этом мощность шумов на выходе линейного тракта РПУ равна 2·10^-8 Вт. Вычислить приведенную ко входу мощность собственных шумов, если шумовая полоса РПУ 2 МГц, a коэффициент усиления мощности линейного тракта 60 дБ. Определить коэффициент шума.

8.20. Вычислить мощность шумов на выходе усилителя в полосе частот 10 МГц, если его вход согласован с источником сигнала, находящимся при комнатной температуре. Коэффициент шума усилителя равен 3 дБ, а его коэффициент усиления по мощности 16 дБ.

8.21. Согласованная антenna с шумовой температурой 420 К подключена к РПУ с шумовой температурой 570 К и полосой пропускания 10 МГц. Определить чувствительность РПУ, обеспечивающую коэффициент различимости, равный \(D = 3 \). Вычислить коэффициент шума РПУ.

8.22. Рассчитать эффективное значение корректирующего напряжения собственных шумов усилителя, пересчитанное в цепь базы транзистора, в полосе частот 5 кГц, если между базой и эмиттером включено активное сопротивле-
ние 5 кОм, входное сопротивление транзистора 2 кОм, относительная шумовая температура входной проводимости равна 2.

8.23. Вычислить отношение сигнал/шум на выходе линейного тракта РПУ, если его чувствительность 6·10^{-14} Вт, коэффициент шума 4, шумовая температура антенны 200 К, коэффициент передачи фидера 0,8; шумовая полоса частот 500 кГц.

8.24. Рассчитать коэффициент различимости РПУ, структурная схема и основные данные которого приведены на рис. 8.7, при условии, что шумовая полоса высокочастотного блока Π_{Ш} = 1 МГц, а мощность сигнала на входе П_{C,ВХ} = 10^{-13} Вт.

8.25. Определить шумовую температуру антенны, согласованной со входом приемника. Мощность шума на выходе блока ВЧ 55,2 мВт. Параметры блока ВЧ: Π_{Ш} = 1 МГц; Ш = 11; K_{P,НОМ} = 120 дБ.

8.26. Вычислить шумовую температуру линейного тракта РПУ (рис. 8.8).
(Ответ: T_{Ш} = 1395 К).

Контрольные вопросы

1. В каком случае чувствительность РПУ слабо зависит от коэффициента шума?
2. Как зависит чувствительность РПУ от коэффициента передачи фидера?
3. Какие параметры параллельного колебательного контура определяют его шумовое напряжение?
4. Какими параметрами и как оценивается шум приемной антенны?
5. Можно ли получить в двухкаскадном усилителе с идентичными каскадами коэффициент шума меньше, чем коэффициент шума одного каскада?
6. Что такое эффективная полоса пропускания резонансной системы?
7. Нарисовать эквивалентные шумовые схемы резистора с генераторами тока и напряжения. Доказать их равнозначность.
8. Причины генерации шумового напряжения в резисторе. Чем определяется это напряжение?
9. Что такое эффективная температура? Чему она равна для двух резисторов, включенных последовательно и параллельно?
10. Причины шума транзистора. Чем он определяется?
11. Как оценивается шум приемной антенны?
12. Дать определение коэффициента шума четырехполюсника.
13. Чему равна мощность шума резистора, передаваемая в нагрузку при согласовании?
14. Какова связь между коэффициентами шума многокаскадной схемы и составляющих ее каскадов?
15. Как зависит чувствительность РПУ от параметров его элементов?
9 ПРОХОЖДЕНИЕ СИГНАЛА И ШУМА ЧЕРЕЗ ТИПОВЫЕ БЛОКИ РАДИОПРИЕМНЫХ УСТРОЙСТВ

9.1 Прохождение шума через радиочастотный блок

Выходное напряжение радиочастотного блока (РЧБ), на входе которого действует белый шум, представляет собой квазигармонический процесс (рис. 9.1). Амплитуда U и фаза φ медленным и случайным образом изменяются во времени.

$$U(t) = U(t) \cos(\omega_0 t - \varphi(t)). \tag{9.1}$$

Частота ω_0 этих колебаний равна центральной частоте настройки РЧБ. Случайную функцию времени $U(t)$ называют огибающей квазигармонического напряжения. Процесс (9.1) можно представить и суммой двух квадратурных составляющих в виде:

$$U(t) = U_c(t) \cos(\omega_0 t) + U_s(t) \sin(\omega_0 t), \tag{9.2}$$

где

$$U_c(t) = U(t) \cos(\varphi(t)); \quad U_s(t) = U(t) \sin(\varphi(t)). \tag{9.3}$$

Случайные функции $U_c(t)$ и $U_s(t)$ независимы, подчиняются нормальному закону распределения, центрированы около нуля и имеют одинаковую дисперсию $\sigma^2 = U_m^2$, где U_m – среднеквадратическое значение квазигармонического напряжения (9.1). На рис. 9.2 показана векторная диаграмма, соответствующая (9.2) и (9.3), с возможной траекторией конца вектора U.

Так как ориентация вектора U равновероятна для любого положения в плоскости диаграммы, то случайная фаза имеет равномерную плотность вероятности в пределах $\varphi = -\pi \ldots + \pi$.

Плотность вероятности мгновенных значений квазигармонического напряжения $U(t)$ подчиняется нормальному закону.
\[
W(U) = \frac{1}{U_m \sqrt{2}} \exp \left(-\frac{U^2}{2U_m^2} \right),
\]
где \(U_m \) — среднеквадратическое значение квазигармонического напряжения

\[
U_m^2 = \int_0^\infty G(f) \, df = G_{RX} K_0^2 \Pi_{III},
\]
здесь \(G_{RX} \) — спектральная плотность результирующего входного шума; \(K_0 \) — резонансный коэффициент передачи РЧБ; \(\Pi_{III} \) — эквивалентная шумовая полоса РЧБ.

Плотность вероятности огибающей \(U(t) \) подчиняется закону Рэлея: зависимость функции \(W(U) \) \(U_m \) от нормированного аргумента \(U/U_m \) показана на рис. 9.3.

![Рис. 9.3. Закон Рэлея](image)

Следует отметить, что абсцисса максимума численно совпадает со среднеквадратическим значением \(U_{III} \) квазигармонического напряжения. Среднее значение \(\bar{U} \), средний квадрат \(\bar{U}^2 \) и дисперсия \(\sigma_U^2 \) огибающей \(U(t) \) соответственно равны:

\[
\bar{U} = U_m \sqrt{2l\pi} \approx 1,25U_m, \tag{9.6}
\]

\[
\bar{U}^2 = 2U_{III}^2, \tag{9.7}
\]

\[
\sigma_U^2 = (4 - \pi) \frac{U_{III}^2}{2} \approx 0,43U_{III}^2. \tag{9.8}
\]

9.2 Прохождение шума и немодулированного сигнала через РЧБ

На входе радиочастотного блока одновременно с белым шумом действует гармонический сигнал \(U_C(t) = U_m \cos(\varphi(t)) \), частота которого совпадает с центральной частотой \(\omega_0 \) настройки РЧБ. Так как РЧБ представляет собой линей-
ную систему, то результирующее колебание на его выходе равно сумме квазигармонического шума и сигнала

$$U_{\Sigma}(t) = U(t) \cos[\omega t - \varphi(t)] + U_m \cdot \cos(\omega t),$$

(9.9)

и является квазигармоническим колебанием вида

$$U_{\Sigma}(t) = V(t) \cos[\omega t - \varphi(t)].$$

(9.10)

В соответствии с (9.3) и (9.10) огибающую $V(t)$ можно представить вектором (рис. 9.4), длина которого равна $V = \sqrt{(U_m + U_C)^2 + U_S^2}$.

![Векторная диаграмма](image1)

Рис. 9.4. Векторная диаграмма

Рис. 9.5. Закон Райса

Результирующий вектор V из-за наличия сигнала расположен преимущественно вблизи вектора U_m. Следовательно, плотность вероятности фазы $W(\Phi)$ не является равномерной и имеет максимум при $\Phi = 0$. При большем уровне сигнала, когда соотношение сигнал-шум $\alpha = U_C / U_{III} \geq 3$,

$$W(\Phi) \approx \frac{\alpha}{\sqrt{2\pi}} \exp \left(-\frac{\alpha^2 \Phi^2}{2} \right).$$

(9.11)

При этом же условии ($\alpha \geq 3$) длина вектора V равна

$$V \approx U_m + U_C.$$

(9.12)

Так как величина U_m детерминирована, то плотность вероятности огибающей V определяется распределением для U_C, которое, как уже отмечалось, нормальное, причем дисперсия σ_V^2 равна $\sigma_V^2 = U_m^2$. Очевидно, что среднее значение V огибающей равно U_m. Таким образом, при $\alpha \geq 3$

$$W(V) \approx \frac{1}{U_m \sqrt{2}} \exp \left(-\frac{(V - U_m)^2}{2U_m^2} \right).$$

(9.13)
В общем случае при произвольном значении \(\alpha \) плотность вероятности \(V \) подчиняется закону Райса (рис. 9.5)

\[
W(V) = \frac{V}{U_m^2} \cdot I_0 \left(\frac{V \cdot U_m}{U_m^2} \right) \exp \left(-\frac{(V^2 - U_m^2)^2}{2U_m^2} \right),
\]
(9.14)

где \(I_0 \) — символ модифицированной функции Бесселя нулевого порядка. Зависимость функции \(W(V) \cdot U_m \) от аргумента \(V/V_m \) показана на рис. 9.5. Средние значения \(V \) огибающей \(V \) и дисперсии \(\sigma^2_U \) ее флуктуаций равны

\[
\bar{V} = U_m + M(\alpha), \quad \sigma^2_U = U_m^2 \cdot N^2(\alpha).
\]
(9.15)

Графики функции \(M(\alpha) \) и \(N(\alpha) \) представлены на рис. 9.6 а и 9.6 б.

![Рис. 9.6. К определению параметров флуктуаций](image)

9.3 Прохождение шума через линейный амплитудный детектор

При действии на входе амплитудного детектора (АД) (рис. 9.7) квазигармонического колебания с огибающей \(U(t) \) на резисторе \(R \) образуется случайное напряжение

\[
\xi(t) = K_D U(t),
\]
(9.16)

где \(K_D \) — коэффициент передачи детектора.

![Рис. 9.7. Амплитудный детектор](image)
Если принять потери разделительного конденсатора \(C_p \) равными нулю, то на выходе \(C_p \) будут флуктуации \(E(t) \) продетектированного напряжения \(\dot{\xi}(t) \) без потерь.

Плотность вероятности случайного напряжения \(\dot{\xi}(t) \), так же как и огибающая \(U(t) \), подчиняется закону Рэлея

\[
W(\dot{\xi}) = \frac{\dot{\xi}}{K_U \cdot U_{sh}} \exp \left(-\frac{\dot{\xi}^2}{2\left(K_D \cdot U_{sh}\right)^2} \right).
\]
(9.17)

Постоянная составляющая случайного напряжения \(\dot{\xi}(t) \) на нагрузке детектора, его среднеквадратическое значение \(\dot{\xi}_{ck} \) и среднеквадратическое значение флуктуаций \(\varepsilon_{ck} \) на выходе разделительной цепочки \((C_pR_p) \) определяются следующими выражениями:

\[
\dot{\xi} = \frac{U_{sh} \cdot K_D}{\sqrt{\frac{2}{\pi}}} \approx 1,25 \cdot U_{sh} \cdot K_D,
\]
(9.18)

\[
\dot{\xi}_{ck} = U_{sh} \cdot K_D \sqrt{\frac{2}{\pi}} \approx 1,44 \cdot U_{sh} \cdot K_D,
\]
(9.19)

\[
\varepsilon_{ck} = U_{sh} \cdot K_D \sqrt{\frac{4 - \pi}{2}} \approx 1,44 \cdot U_{sh} \cdot K_D.
\]
(9.20)

Выражение (9.19) позволяет достаточно просто определить среднеквадратическое напряжение \(U_{sh} \) квазигармонического шума. Измеренная с помощью обычного магнитоэлектрического прибора постоянная составляющая тока \(I_{Pост} \) через резистор нагрузки \(R \) детектора позволяет вычислить

\[
U_{sh} = \frac{I_{Pост} \cdot R}{1,25 \cdot K_D}.
\]
(9.21)

Плотность вероятности флуктуации \(\varepsilon(t) \) на выходе разделительной цепи равна

\[
W(\varepsilon) = \frac{\varepsilon + \sqrt{\frac{2\pi}{2}}K_D \cdot U_{sh}}{K_D \cdot U_{sh}} \exp \left[\frac{\left(\varepsilon + \sqrt{\frac{2\pi}{2}}K_D \cdot U_{sh}\right)^2}{\left(K_D \cdot U_{sh}\right)^2} \right].
\]
(9.22)

Графики \(W(\varepsilon) \) для двух значений \(U_{sh} \) показаны на рис. 9.8.

Для приемника, у которого АЧХ РЧБ аппроксимирована прямоугольником шириной \(\Pi_{ш} \), спектральная плотность напряжения флуктуации определяется приближенным выражением

\[
G(f) = (4 - \pi)(K_0 K_D)^2 \cdot G_{bx} \cdot \frac{\Pi_{ш} - f}{\Pi_{ш}}, \quad 0 \leq f \leq \Pi_{ш}.
\]
(9.23)

Здесь \(G_{bx} \) – спектральная плотность напряжения шума на входе приемника.
Если АЧХ РЧБ аппроксимируется гауссовской кривой, то

\[G(f) = (4 - \pi) \left(K_0 K_D \right)^2 \cdot G_{BV} \cdot \exp \left[-\frac{\pi f}{2 \Pi_W} \right]. \tag{9.24} \]

Характер изменения спектральной плотности флуктуации при изменении полосы пропускания РЧБ показан на рис. 9.9 а.

9.4 Прохождение шума через квадратичный амплитудный детектор

Характеристика квадратичного амплитудного детектора

\[\xi = \beta \cdot U^2, \tag{9.25} \]

где \(\xi \) — напряжение на выходе детектора, \(U \) — амплитуда входного напряжения, \(\beta \) — параметр детектора.

Плотность вероятности мгновенных значений выходного напряжения \(\xi(t) \) определяется экспоненциальной функцией

\[W(\xi) = \frac{1}{q} \cdot \exp \left(-\frac{\xi}{q} \right), \quad q = 2\beta \cdot U^2. \tag{9.26} \]

Постоянная составляющая \(\xi_{ПОСТ} \), среднеквадратические значения \(\xi_{СК} \) напряжения \(\xi(t) \) и его флуктуации \(E_{СК} \) равны:

\[\xi_{ПОСТ} = q, \quad \xi_{СК} = q\sqrt{2}, \quad E_{СК} = q. \tag{9.27} \]
Если АЧХ РЧБ приемника аппроксимируется прямоугольником, то выражение для спектральной плотности флуктуаций принимает вид:

\[G(f) = 8(\beta K_0 G_{BX})^2 \cdot (\Pi_{III} - f), \quad f \leq \Pi_{III}, \quad (9.28) \]

При квадратичном детектировании величина \(G(f) \) зависит от шумовой полосы пропускания РЧБ приемника, так как при расширении полосы РЧБ возрастающее напряжение шума на входе квадратичного АД повышает его коэффициент передачи (рис. 9.9 б).

9.5 Прохождение шума и гармонического сигнала через линейный АД

Огибающая \(V(t) \) результирующего колебания (9.10) воспроизводится на нагрузке АД линейно \(\tilde{\xi}(t) = K_D V(t) \), поэтому на выходе АД статистические характеристики случайного напряжения \(\tilde{\xi}(t) \) и огибающей \(V(t) \) оказываются подобными. Плотность вероятности для \(\tilde{\xi}(t) \), также как и для огибающей, подчиняется закону Райса с учетом масштабного множителя \(K_D \):

\[W(\tilde{\xi}) = \frac{\tilde{\xi}}{(K_D U_{III})^2} \cdot 1_0 \left(\frac{\tilde{\xi} \cdot U_{III}}{K_D \cdot U_{III}^2} \right) \exp \left[-\frac{\tilde{\xi} + (K_D U_{III})}{2(K_D U_{III})^2} \right]. \quad (9.29) \]

Постоянная составляющая \(\tilde{\xi}_{ПОСТ} \), среднеквадратическое значение \(\tilde{\xi}_{СК} \) выходного напряжения \(\tilde{\xi}(t) \) и его флуктуации \(\varepsilon_{СК} \):

\[\tilde{\xi}_{ПОСТ} = K_D U_{III} M(\alpha), \quad (9.30) \]

\[\tilde{\xi}_{СК} = 2K_D U_{III} \left(1 + \frac{\alpha^2}{2} \right), \quad (9.31) \]

\[\varepsilon_{СК} = K_D U_{III} N(\alpha). \quad (9.32) \]

Спектр флуктуации \(E(t) \) формируется из двух частичных спектров:

\[G(f) = G_1(f) + G_2(f). \quad (9.33) \]

Для АЧХ РЧБ идеально прямоугольной формы:

\[G_1(f) = (4 - \pi) b_1 \left(K_0 K_D \right)^2 \cdot G_{BX}, \quad 0 \leq f \leq 0.5 \Pi_{III}, \quad (9.34) \]

\[G_2(f) = (4 - \pi) b_2 \left(K_0 K_D \right)^2 \cdot G_{BX} \cdot \left(\frac{\Pi_{III} - f}{\Pi_{III}} \right), \quad (9.35) \]

а для гауссовой формы:

\[G_1(f) = (4 - \pi) b_1 \left(K_0 K_D \right)^2 \cdot G_{BX} \cdot \exp \left(-\frac{\pi f^2}{2 \Pi_{III}^2} \right), \]

\[G_2(f) = (4 - \pi) b_2 \left(K_0 K_D \right)^2 \cdot G_{BX} \cdot \exp \left(-\frac{\pi f^2}{2 \Pi_{III}^2} \right). \quad (9.35) \]
Графики функций \(b_1(a) \) и \(b_2(a) \) приведены на рис. 9.10.

Рис. 9.10. Графики функций \(b_1(a) \) и \(b_2(a) \)

9.6 Прохождение немодулированного сигнала и шума через ЧД

При анализе воздействия немодулированного сигнала и шума через частотный детектор принимаются следующие условия:

- частотный детектор обладает свойствами идеального амплитудного ограничителя;
- детекторная характеристика ЧД линейная с крутизной \(S_{ЧД} \);
- шум, действующий на входе ЧД, поступает с выхода РЧБ, АЧХ которого идеально прямоугольная, поэтому входной шум ЧД считается белым с известной спектральной плотностью напряжения \(G \);
- уровень сигнала на входе ЧД существенно превышает уровень шума;
- частота несущего колебания сигнала совпадает с центральной частотой настройки РЧБ.

Для принятых условий спектральная плотность напряжения шумовых флуктуаций на выходе ЧД описывается параболой:

\[
G_{Вых} (F) = \frac{S_{ЧД}^2 \cdot G}{U_{С.ЭФ}^2}, \tag{9.36}
\]

где \(U_{С.ЭФ} \) – эффективное значение несущей ЧМ сигнала на входе ЧД.

Выражение (9.36) является точным для немодулированного сигнала и приводит к ошибках менее 10% при индексе модуляции \(\Psi \geq 5 \). Важно, что из всего спектра флуктуаций на выходе стоящего после ЧД усилителя низкой частоты проникает лишь незначительная часть шумовых составляющих (защищованная область на рис. 9.11), так как \(\Pi_{УНЧ} \ll \Pi_{РЧБ} \). Этим и объясняется повышенная помехоустойчивость при приеме ЧМ сигналов. Если АЧХ УНЧ считать прямоугольной в пределах \(0...F \), то среднеквадратическое напряжение флуктуаций на выходе
Измерение коэффициента шума приемника

Результаты анализа прохождения шума и сигнала через типовые блоки РПУ позволяют создать методы экспериментального определения коэффициента шума РЧБ. На рис. 9.12 представлена схема измерения с использованием генератора стандартных сигналов (ГСС) и детектором, который считается линейным.

Метод основан на двукратном измерении выходной мощности РЧБ. При первом измерении ГСС выключен, но не отключен от входа РЧБ, и фиксируется выходная мощность шума:

\[P_{III,Вых(1)} = kT_0 qK_P K_{III}. \]

(9.38)

При втором измерении ГСС включается, и на вход РЧБ подается гармоническое колебание с частотой настройки РЧБ. Входная мощность \(P_{C ВХ} \) сигнала устанавливается такой, при которой выходная мощность \(P_{III,Вых(2)} \) становится в заданное число \(n \) раз больше \(P_{III,Вых(1)} \):

\[P_{III,Вых(2)} = nkT_0 P_{III} qK_P K_{III}. \]

(9.39)

Мощность \(P_{III,Вых(2)} \) можно представить суммой мощностей шума и гармонического колебания

\[P_{III,Вых(2)} = kT_0 P_{III} qK_P K_{III} + P_{C,ВХ} qK_P. \]

(9.40)
Приравнивая правые части уравнений (9.39) и (9.40) и решая относительно K_I, получим

$$K_I = \frac{P_{C, ВХ}}{(n-1)kT_0\Pi_I}.$$

(9.41)

Как при первом, так и при втором измерении, значение U_I остается постоянным, поэтому выпрямленныйток $I_{ПОСТ} = \left(K_I U_I M(a) \right) / R$ зависит только от значения функции $M(a)$ (рис. 9.6). При первом измерении $a = 0$, так как в РЧБ действует только шум и $I_{ПОСТ(1)} = A \cdot M(a)$. Для определения значения a при втором измерении представим величину n в следующем виде:

$$n = \frac{P_{I, ВХ(1)} + P_{ВХ}}{P_{I, ВХ(1)}} = 1 + \frac{\left(U_C / \sqrt{2} \right)^2}{U_I^2} = 1 + \frac{\alpha^2}{2},$$

(9.42)

где U – амплитуда гармонического сигнала на выходе РЧБ.

Из (9.42) следует, что $a = \sqrt{2(n-1)}$ и $I_{ПОСТ(2)} = A \cdot M\left(\sqrt{2(n-1)} \right)$. Таким образом, увеличение выходной мощности в n раз соответствует увеличению выпрямленного тока в S раз:

$$S = \frac{M\left(\sqrt{2(n-1)} \right)}{M(0)}.$$

(9.43)

Описанный метод измерения коэффициента шума РПУ при $n = 2$ часто называют «методом удвоения мощности», при этом $S = 1.41$.

Для исключения необходимости определения в (9.41) величины Π_I, учитывающей прохождение шума по паразитным каналам, применяется метод двукратного измерения выходной мощности с использованием генератора белого шума.

В этом случае исходное выражение (9.41) принимает следующий вид:

$$K_I = \frac{P_{I, ВХ}}{(n-1)kT_0\Pi_I},$$

(9.44)

где $P_{I, ВХ} = \text{мощность шума, отбираемая от генератора шума (ГШ), при которой выходная мощность РЧБ увеличивается в n раз по сравнению с первым измерением, когда ГШ выключен.}$

Так как ГШ рассматривается как источник белого шума, то

$$P_{I, ВХ} = G_{ВX} \Pi_I,$$

(9.45)

gде $G_{ВX}$ – спектральная плотность мощности, рассеиваемой на входной проводимости РЧБ. Подставим (9.45) в (9.44), получим выражение для K_I, в котором отсутствует величина Π_I.

167
\[K_{III} = \frac{G_{BX}}{(n-1)kT_0}. \] (9.46)

Так как и в первом, и во втором измерениях \(\alpha = 0 \), то выпрямленные токи \(I_{ПОСТ(1)} \) и \(I_{ПОСТ(2)} \), равные \(I_{=(1)} \) и \(I_{=(2)} \), зависят только от напряжения \(U_{III} \) на выходе РЧБ. Фиксация увеличения выходной мощности в заданное число \(n \) раз определяется по увеличению выпрямленного тока в \(S = \sqrt{n} \) раз.

При использовании в качестве ГШ насыщенного вакуумного диода

\[G_{BX} = 0.5eI_0R, \] (9.47)

где \(I_0 \) – постоянная составляющая тока диода, мА; \(R \) – выходное сопротивление ГШ, кОм, согласованное с сопротивлением на входе РЧБ; \(e \) – заряд электрона.

С учетом (9.47) выражение (9.46) принимает вид:

\[K_{III} = \frac{20I_0R}{(n-1)}, \] (9.48)

Примеры решения задач

Пример 9.1. На входе квадратичного АД среднеквадратическое напряжение собственного шума приемника \(U_{III} = 120 \) мВ. АЧХ РЧБ прямоугольная с полосой \(\Pi_{III} = 1,5 \) МГц. Показание микроамперметра постоянного тока в цепи нагрузки \((R = 1 \) кОм) детектора равно \(10 \) мкА. Составить выражение для спектральной плотности напряжения флуктуации на выходе детектора.

Решение.

1. Используем выражение для спектральной плотности флуктуации

\[G(f) = 8\beta K_0^2 G_{BX} \cdot (\Pi_{III} - f). \]

2. Так как постоянная составляющая напряжения шума

\[q = \xi_{ПОСТ} = I_{ПОСТ} \cdot R = 2 \cdot \beta \cdot U_{III}^2, \]

то находим

\[\beta = q / 2U_{III}^2 = \frac{10 \cdot 10^{-6} \cdot 10^3}{2 \cdot (120 \cdot 10^{-3})^2} = 0,35 B^{-1}. \]

3. Учитывая, что \(U_{III}^2 = G_{BX} \cdot K_0^2 \cdot \Pi_{III} \), получим

\[G_{BX} \cdot K_0^2 = \frac{U_{III}^2}{\Pi_{III}}. \]

И тогда

\[G(f) = \frac{8\beta^2 U_{III}^4}{\Pi_{III}^2} = 0,903 \cdot 10^{-16} \cdot (\Pi_{III} - f). \]
Пример 9.2. Блок радиочастоты шумящего приемника имеет гауссовскую АЧХ с шумовой полосой пропускания \(\Pi_{III} = 1,5 \) МГц. На выходе линейного АД, подключенного к блоку радиочастот, измеренное среднеквадратическое напряжение флуктуации равно 1,2 В. Составить выражение для спектральной плотности напряжения этих флуктуаций.

Решение.
1. Так как АЧХ блока радиочастоты аппроксимируется гауссовой кривой, то
\[
G(f) = \frac{4-\pi}{\sqrt{2}} \left(K_0 K_D \right)^2 G_{BX} \cdot \exp \left(-\frac{\pi \cdot f^2}{2\Pi_{III}^2} \right).
\]
2. Учитывая, что \(U_{III}^2 = G_{BX} \cdot K_0^2 \cdot \Pi_{III} \), получим
\[
G_{BX} \cdot K_0^2 = \frac{U_{III}^2}{\Pi_{III}},
\]
следовательно,
\[
G(f) = \frac{4-\pi}{\sqrt{2}} \cdot \frac{K_D^2 \cdot U_{III}^2}{\Pi_{III}} \cdot \exp \left(-\frac{\pi \cdot f^2}{2\Pi_{III}^2} \right).
\]
Поскольку среднеквадратическое значение флуктуации
\[
\varepsilon_{CK} = 0,65 \cdot U_{III} K_D = 1,2B,
\]
то окончательно имеем
\[
G(f) = \frac{4-\pi}{\sqrt{2}} \cdot \frac{K_D^2 \cdot 1,2^2}{\Pi_{III} (0,65)^2} \cdot \exp \left(-\frac{\pi \cdot f^2}{2\Pi_{III}^2} \right) = 1,39 \cdot 10^{-6} \cdot \exp \left(-0,7 \cdot f^2 \right),
\]
где \(f \) – частота, МГц.

Пример 9.3. Шумовая полоса РЧБ приемника 1 МГц. Коэффициент шума измеряется с помощью ГСС. Миллиамперметр, включенный в сеть нагрузки линейного АД, при выключенном сигнале показал \(I_{POST1} = 0,1 \) мА. При включеннном сигнале, мощность которого \(5,18 \cdot 10^{-13} \) Вт, показания миллиамперметра \(I_{POST2} = 0,4 \) мА. Определить коэффициент шума приемника.

Решение.
1. Определяем увеличение выпрямленного тока в виде отношения показаний миллиамперметра при включенном сигнале и выключенном сигнале:
\[
S = \frac{I_{POST2}}{I_{POST1}} = \frac{0,4}{0,1} = 4.
\]
2. Так как при первом измерении сигнал отсутствует, то \(\alpha = \frac{U_{ШС}}{U_{Ш}} \) и тогда

\[M(0) = 1,25 \] (рис. 9.6).

3. Учитывая, что

\[S = \frac{M \sqrt{2(n-1)}}{M[0]} \]

получим

\[S = \frac{M \sqrt{2(n-1)}}{1,25} = 4. \]

Откуда

\[M \sqrt{2(n-1)} = 5. \]

По данным рис. 9.6 определяем, что \(\sqrt{2(n-1)} = 5 \), следовательно, увеличение выходной мощности \(n = 13,5 \).

4. Рассчитываем коэффициент шума при 20°C

\[III = \frac{P_{скв}}{(n-1)kT_0 \Pi_{ШШ}} = \frac{5,18 \cdot 10^{-13}}{(13,5 - 1) \cdot 1,38 \cdot 10^{-23} \cdot 293 \cdot 1 \cdot 10^6} = 10,24. \]

Пример 9.4. На входе приемника ЧМ сигнала действует сигнал, индекс модуляции которого \(\Psi = 5 \), и белый шум. Отношение сигнал-шум на входе амплитудного ограничителя ЧД \(\alpha = 4 \). Крутизна детекторной характеристики \(S_{ЧД} = 0,5 \) В/МГц. АЧХ усилителя низкой частоты прямоугольная с полосой пропускания, определяемой верхней частотой модуляции \(F_B = 12 \) кГц. Коэффициент усиления УНЧ равен 20. Определить среднеквадратическое напряжение флуктуации на выходе УНЧ.

Решение.

1. Среднеквадратическое напряжение флуктуации на выходе УНЧ определяется на основе выражения

\[\varepsilon_{СК} = \frac{K_{УНЧ} \cdot S_{ЧД} \cdot F_B \cdot \sqrt{G \cdot F_B}}{U_{C,эфф} \cdot \sqrt{3}}, \]

где \(G \) – спектральная плотность белого шума.

Задачи

9.1. На входе резонансного усилителя (рис. 9.13), у которого \(f_0 = 1 \) МГц, \(L_K = 10 \) мкГн, \(Q_3 = 100 \), действует белый шум. Для измерения среднеквадратического напряжения шума на контуре \(U_K \) к нему подключен вольтметр
с входным сопротивлением 6,3 кОм, который показывает 1 В. Чему равно напряжение \(U_K \) при отключенном вольтметре? Что происходит с резонансным коэффициентом усиления \(K_0 \) и полосой пропускания?

(Ответ: \(U_K = 1,41 \text{ B} \)).

Рис. 9.13. К задаче 9.1

9.2. Как изменится среднеквадратическое напряжение шума на выходе каскада (рис. 9.13), на входе которого действует белый шум, если увеличить добротность контура, изменения: а) только характеристическое сопротивление контура; б) только потери в контуре? Считать, что \(g_{22} \ll g_{K3} \).

(Ответ: а) увеличится в \(2\sqrt{2} \) раз; б) увеличится в \(\sqrt{2} \) раза).

9.3. На входе двухкаскадного УПЧ с одночными настроенными резонанс контурами действует белый шум. Изменится ли уровень выходного шума, если данный УПЧ превратить в рассстроенную двухконтуруную систему, сохранив общее усиление и полосу пропускания прежними?

(Ответ: уменьшится).

9.4. Определить среднеквадратическое напряжение на нагрузке линейного АД (рис. 9.14), если на его входе среднеквадратическое значение квазигармонического шума равно 1,22 В. Считать \(K_d = 0,5 \).

(Ответ: \(\bar{\xi}_c = \bar{\xi}^2 + \bar{\xi}_{post}^2 = 1,5 \text{В} \)).

Рис. 9.14. Линейный амплитудный детектор

9.5. На выходе УПЧ действует собственный шум приемника и шум антенны. Плотность вероятности мгновенных значений этого напряжения \(W(U) = 0,56 \cdot e^{-U^2} \). Определить среднеквадратическое напряжение \(U_{III} \) выходного шума.

(Ответ: \(U_{III} = 0,71 \text{ B} \)).

9.6. При одновременном действии на входе линейного детектора (рис. 9.15) гармонического сигнала и шума, поступающего с выхода РЧБ, показания
приборов $U_{CK} = 0.5$ В, $I_{ПОСТ} = 5$ мА. Как изменятся эти показания, если: а) сигнал станет равным нулю; б) шум станет равным нулю?

(Ответ: а) $I_{ПОСТ} = 0.625$ мА, $U_{CK} = 0.325$ В; б) $I_{ПОСТ} = 5$ мА, $U_{CK} = 0$).

Рис. 9.15. К задаче 9.6

9.7. С выхода РЧБ приемника ЧМ сигналов на ограничитель ЧД поступают шум со среднеквадратическим напряжением 1 мВ и гармонический сигнал с амплитудой 1 В. Уровень ограничения 20 мВ. Во сколько раз изменится интенсивность шума на выходе ЧД, если: а) уменьшить в два раза уровень ограничения; б) увеличить в два раза амплитуду гармонического сигнала. Считать ограничитель идеальным.

(Ответ: а) не изменится б) уменьшится в два раза).

9.8. На входе приемника ЧМ сигналов действует немодулированное напряжение и белый шум, причем $\alpha >> 3$. Как изменится среднеквадратическое напряжение шума на выходе УНЧ приемника, если полосу пропускания РЧБ увеличить в два раза, сохранив коэффициент усиления?

(Ответ: не изменится).

9.9. Электродвижущая сила генератора сигнала (рис. 9.16) $E_G = 10$ мкВ. Внутреннее сопротивление генератора $R_f = 100$ Ом и согласовано с входным сопротивлением РЧБ приемника. АЧХ РЧБ прямоугольная, полоса пропускания 12 МГц. Напряжение на элементах цепи линейного детектора: $U_{ПОСТ} = 5$ В, $U_{CK} = 0.5$ В. Найти коэффициент шума приемника.

Рис. 9.16. Приемник с генератором сигнала ГС и линейным детектором
10 ПОМЕХОУСТОЙЧИВОСТЬ РАДИОПРИЕМНЫХ УСТРОЙСТВ ШУМОВЫМ (ФЛУКТУАЦИОННЫМ) ПОМЕХАМ

Помехоустойчивость представляет собой одну из главных проблем теории и техники радиоприема, так как на входе радиоприемного устройства кроме полезного сигнала присутствует и мешающий сигнал (помеха).

Флуктуационная (шумовая) помеха относится к классу аддитивных помех, не сосредоточена по частоте и времени, имеет более широкий спектр, чем сигнал, и присутствует на входе приемника постоянно. К флуктуационным помехам относятся собственные шумы радиоаппаратуры, шумы Галактики, а также суммарные колебания, образованные большим числом сосредоточенных или импульсных составляющих, равномерных по интенсивности и обладающих одинаковыми стохастическими свойствами.

Длительность импульсов, составляющих флуктуационную помеху, очень мала. Поэтому спектральная плотность мощности помехи $G(f)$ постоянна вплоть до очень высоких частот. На рабочих частотах $f < 100$ ГГц и при абсолютных температурах $T > 4,3 \, K$ можно считать

$$ G(f) = kT. $$

В качестве статистической модели флуктуационных помех часто используется гауссовская модель.

Гауссовский (нормальный) шум – это стационарный в узком смысле случайный процесс, имеющий гауссовский закон распределения мгновенных значений $n(t)$ и обладающий эргодическими свойствами, т.е.

$$ P(n) = \frac{1}{\sqrt{2\pi}\sigma} \cdot \exp \left(-\frac{n^2}{2\sigma^2} \right), $$

где $P(n)$ – плотность распределения вероятностей; σ^2 – дисперсия; σ – среднее квадратичное отклонение.

В случае воздействия белого шума, у которого $G_{ВХ}(f) = G_0$, мощность помехи на выходе РЧБ

$$ P_{ВХ} = G_0 \int_0^\infty k^2 (f) \, dt = G_0 \cdot \Delta F_{ШШ} \cdot K_0^2. $$

Мгновенные значения флуктуационной помехи распределены по нормальному закону с нулевым математическим ожиданием, а фаза – равномерно. Плотность вероятности огибающей помехи подчиняется закону Релея

$$ W(U_\phi) = \left(\frac{U_\phi}{\sigma_{CP}} \right) \cdot \exp \left(-\frac{U_\phi^2}{\sigma_{CP}^2} \right). \quad (10.1) $$

173
Дисперсия огибающей помехи, характеризующая интенсивность флуктуации в последнетекторном тракте РПУ,

\[\sigma^2 = \frac{1}{2} \int_{0}^{\infty} U^2 \cdot W(U) \, dU - \left(\int_{0}^{\infty} U \cdot W(U) \, dU \right)^2 \approx 0.43 \cdot \sigma^2. \]

(10.2)

Флуктуационная помеха «гладкая» по сравнению с импульсной; ее пик-фактор \(K_{PP} = \frac{U_{max}}{\sigma} = 3, \) где \(U_{max} \) – максимальное мгновенное значение помехи.

Надежность работы любого радиоканала определяется степенью достоверности приема переданной информации при наличии помех. Для обеспечения заданной достоверности приема информации при действии помех объем канала

\[V_K = T_K \cdot F_K \cdot H_K \]

(10.3)

должен иметь определенное превышение над объемом системы

\[V_C = T_C \cdot F_C \cdot H_C, \]

(10.4)

dе \(T_K \) – интервал времени работы радиоканала; \(F_K \) – ширина полосы пропускания; \(H_K \) – диапазон различий градаций интенсивности сигналов; \(T_C \) – длительность сигнала; \(F_C \) – ширина спектра сигнала; \(H_C \) – интервал градаций интенсивности сигнала.

Достоверность приема информации в конкретном канале зависит от характера передаваемого сигнала, принципа построения РПУ и структуры действующей помехи.

10.1 Прием амплитудно-модулированных сигналов

Помехоустойчивость при приеме АМ сигналов существенным образом определяется изменениями характеристик амплитудного детектора при воздействии на него шумового напряжения. Для линейного и безынерционного АД приращение постоянной составляющей, вызванное действием гармонического сигнала, в соответствии с (9.18)

\[\Delta \xi_{post} = \xi_{post} - \xi_{post}|_{\alpha=0} = K_D \cdot U_\text{Ш} \cdot \left[M(\alpha) - M(0) \right]. \]

(10.5)

Представляя (10.5)

\[\frac{\Delta \xi_{post}}{K_D \cdot U_\text{Ш}} = M(\alpha) - \frac{\sqrt{\pi}}{2}, \]

(10.6)

получим уравнение для детекторной характеристики, нормированной относительно величины \(K_0 \cdot U_\text{Ш}. \) Начальный участок этой характеристики (при \(\alpha < 1 \)) описывается параболой

\[\frac{\Delta \xi_{post}}{K_D \cdot U_\text{Ш}} = \frac{\alpha^2 \sqrt{\pi}}{4 \sqrt{2}}. \]

(10.7)
Таким образом, шум, соизмеримый по интенсивности с сигналом или превосходящий его, превращает линейный детектор в квадратичный.

При действии на входе детектора квазигармонического шума со среднеквадратическим значением $U_{Шм}$ и модулированного по гармоническому закону сигнала получим амплитуду демодулированного сигнала

$$U_\Omega = K_D U_{Шм} \left[a \cdot m - \left(\frac{2}{q} \right) e^{-qa} \cdot J_1 (q \cdot a \cdot m) \right], \quad (10.8)$$

где m – коэффициент модуляции: $q = \sqrt{2/\pi}$ – символ модифицированной функции Бесселя 1-го порядка.

С учетом последнего выражения коэффициент передачи линейного детектора при одновременном действии на его входе модулированного сигнала и шума будет равен

$$K_{Д,\Omega} = \frac{U_\Omega}{m \cdot U_{Шм}} = K_D \left[1 - \frac{2}{q \cdot a \cdot m} e^{-qa} \cdot J_1 (q \cdot a \cdot m) \right], \quad (10.9)$$

где K_D – коэффициент передачи детектора при отсутствии шума.

Из (10.9) следует, что

$$v(a) = \frac{K_{Д,\Omega}}{K_D} = 1 - \frac{2}{q \cdot a \cdot m} e^{-qa} \cdot J_1 (q \cdot a \cdot m) \quad (10.10)$$

характеризует степень подавления модулированного сигнала шумом. Следует отметить, что $v(a)$ слабо зависит от коэффициента модуляции m.

Для оценки помехоустойчивости важно знать отношение сигнала к помехе на выходе детектора

$$\left(\frac{C_{ш}}{Шм} \right)_{Вых} = \frac{U_\Omega}{e_{ck} \sqrt{2}} = \frac{m \cdot U_m \cdot K_D \cdot v(a)}{K_D \cdot U_{Шм} \cdot N(a) \sqrt{2}} = \alpha \cdot m \frac{v(a)}{N(a)}. \quad (10.11)$$

Так как отношение сигнал-шум на входе детектора

$$\left(\frac{C_{ш}}{Шм} \right)_{вх} = \frac{m \cdot U_m}{U_{Шм} \sqrt{2}} = \alpha \cdot m, \quad (10.12)$$

tо проигрыш в отношении сигнала-шум при прохождении шума и модулированного сигнала через линейный детектор

$$L(a) = \frac{\left(\frac{C_{ш}}{Шм} \right)_{вх}}{\left(\frac{C_{ш}}{Шм} \right)_{Вых}} = \frac{v(a)}{N(a)}. \quad (10.13)$$

На рис. 10.1 показана зависимость проигрыша в отношении сигнала-шум на выходе линейного детектора от отношения сигнала-шум на его входе. Отсюда следует, что при малом отношении амплитуды сигнала к средне-
квадратическому напряжению шума помехоустойчивость радиоприема АМ низка, так как линейный детектор под действием шума становится по отношению к слабому сигналу квадратичным.

Сохранение линейности детекторной характеристики при сколь угодно слабом сигнале возможно при искусственном увеличении отношения $a = \frac{U_{III}}{U_m}$ за счет применения в РЧБ или непосредственно во входной цепи АД опорного напряжения U_{OP} от специального генератора, частота и фаза которого совпадают с частотой и фазой несущей составляющей сигнала. Результирующее колебание U_{PE3} можно рассматривать как увеличенную несущую сигнала. При этом коэффициент модуляции уменьшается, но амплитуда огибающей результирующего колебания сохраняется прежней. Новое значение отношения сигнал-шум на выходе РЧБ

$$a' = \left(\frac{U_{III} + U_{OP}}{U_{III}} \right)$$ (10.14)

Амплитуда опорного напряжения U_{OP} выбирается из условия $a' \geq 3$, при котором детектор переходит в линейный режим (рис. 10.1) и потери помехоустойчивости отсутствуют.

Амплитуда демодулированного сигнала U_{Ω} зависит от разности фаз Θ опорного напряжения и несущей составляющей сигнала

$$U_{\Omega} = K_D \cdot U_m \cdot \left[\sqrt{(1+m)^2 + \gamma^2 + 2\gamma \cdot (1+m) \cdot \cos \theta} - \sqrt{1 + \gamma^2 + 2\gamma \cos \theta} \right],$$

$$\gamma = \frac{U_{OP}}{U_m}.$$ (10.15)

Выражение в квадратных скобках можно рассматривать как эквивалентный коэффициент модуляции m, при фазовом рассогласовании несущей сигнала и опорного напряжения. На рис. 10.2 показана зависимость $m_\Theta = \varphi(\theta)$ для $m = 0.5$
при различных значениях γ. Данный способ повышения помехоустойчивости при приеме АМ сигналов представляет собой синхронное детектирование.

Рис. 10.2. К определению эффективного коэффициента модуляции

10.2 Прием частотно-модулированных сигналов

Сравним помехоустойчивость приема АМ и ЧМ сигналов при следующих условиях:

– модуляция АМ и ЧМ сигналов осуществляется по гармоническому закону высшей частотой модуляции F_B;
– мощности АМ и ЧМ сигналов на входе РПУ одинаковы;
– сигналы считаются сильными ($a \geq 3$);
– спектральные плотности шума G на входах детекторов одинаковые;
– коэффициенты усиления высокочастотных блоков РПУ и их входные проводимости принимаются равными;
– при $a \geq 3$ наличие модуляции как в АМ, так и в ЧМ сигналах вызывает несущественное изменение средней интенсивности шумовых флуктуаций выходного напряжения;
– степень подавления демодулированного сигнала шумом пренебрежимо мала.

Найдем отношение среднеквадратических напряжений сигнала и флуктуации шума на выходах частотного $(C/\Pi)_{ЧМ}$ и амплитудного детекторов $(C/\Pi)_{АМ}$.

Для приемника ЧМ сигналов среднеквадратическое напряжение флуктуации на выходе детектора в полосе $0...F_B$ определяется следующим образом:

$$\varepsilon_{СК} = \frac{S_{ЧД} \cdot F_B \sqrt{G \cdot F_B}}{U_{ЧМ} \sqrt{3}},$$

где $U_{ЧМ}$ – эффективное напряжение несущей ЧМ сигнала на входе детектора.

Среднеквадратическое напряжение полезного сигнала на выходе детектора равно

$$U_{\Omega} = \frac{S_{ЧД} \cdot \Delta f_C}{\sqrt{2}}.$$
В результате

\[
\left(\frac{C}{III} \right)_{HM} = U_{U} \Phi \frac{3}{2 \sqrt{G \cdot F_{B}}}.
\]

(10.18)

Здесь \(\Phi \) – индекс частотной модуляции.

Среднеквадратическое напряжение флуктуации на выходе детектора приемника АМ сигналов

\[
\epsilon_{CK} = K_{d} \sqrt{2 \cdot G \cdot F_{B}},
\]

(10.19)

полученное при условии, что: \(N(a) = 1 \) при \(a \geq 3 \);

\[
U_{III} = \sqrt{G \cdot \Pi_{III}} ; \quad \Pi_{III} = \Pi = 2F_{B}.
\]

Среднеквадратическое напряжение демодулированного сигнала

\[
U_{\Omega CK} = m \cdot U_{AM} \cdot K_{d0},
\]

(10.20)

gде \(U_{AM} \) – среднеквадратическое напряжение несущей на выходе детектора.

Таким образом,

\[
\left(\frac{C}{III} \right)_{HM} = \frac{m \cdot U_{AM}}{\sqrt{2 \cdot G \cdot F_{B}}}.
\]

(10.21)

При принятом равенстве входных мощностей приемников АМ и ЧМ сигналов

\[
P_{AM} = A \cdot U_{AM}^{2} \cdot \left(1 + \frac{m^{2}}{2} \right),
\]

(10.22)

\[
P_{CHM} = A \cdot U_{CHM}^{2},
\]

(10.23)

gде \(A \) – коэффициент, определяемый усилением и входной проводимостью РЧБ, одинаковый для приемников АМ и ЧМ сигналов. Тогда из (10.22) и (10.23) следует, что

\[
\frac{U_{CHM}}{U_{AM}} = \sqrt{1 + \frac{m^{2}}{2}},
\]

(10.24)

и сравнительная оценка помехоустойчивости при приеме АМ и ЧМ сигналов будет равна

\[
Q = \left(\frac{C/III}{(C/III)_{AM}} \right)_{HM} = \frac{\sqrt{3} \left(1 + 0.5m^{2} \right)}{m}.
\]

(10.25)

Для приемников ЧМ сигналов помехоустойчивость может быть еще увеличена при использовании метода предыскажений, когда наиболее интенсивные спектральные составляющие флуктуаций на выходе ЧД подавляются специально выраженной АЧХ блока УНЧ (рис. 10.3). Для компенсации возникающих при этом частотных искажений передаваемый сигнал «предыскажается» в модуляторе передатчика, АЧХ которого имеет форму, обратную АЧХ УНЧ приемника.
Выигрыш в помехоустойчивости оценивается отношением среднеквадратических напряжений шума на входе УНЧ

\[B = \frac{\varepsilon_{\text{СК}}}{\varepsilon'_{\text{СК}}}, \]

(10.26)

где \(\varepsilon_{\text{СК}} \) определяется без использования метода предыскажений (рис. 10.3), а \(\varepsilon'_{\text{СК}} \) – при использовании данного метода:

\[(\varepsilon'_{\text{СК}})^2 = \int_{0}^{F_B} G(F) \cdot K^2(F) dF. \]

(10.27)

Здесь \(F_B \) – верхняя граница полосы пропускания УНЧ; \(G(F) \) – спектральная плотность напряжения шума на входе восстанавливающего фильтра.

Как правило, в качестве восстанавливающего фильтра применяется однозвездная RC-цепь, у которой

\[K(F) = \frac{1}{\sqrt{1 + (2\pi F)^2}}, \quad \tau = RC. \]

(10.28)

В результате имеем

\[B = \frac{F_B}{\alpha \sqrt{3 \left[F_B - F_B \cdot \arctg\left(\frac{F_B}{\alpha} \right) \right]}}, \quad \alpha = \frac{1}{2\pi}. \]

(10.29)

Повышенная помехоустойчивость при приеме ЧМ сигналов возможна только при \(\alpha \geq 3 \). Если отношение сигнал-шум на входе ЧД уменьшается \((\alpha < 3) \), то наблюдается резкое снижение помехоустойчивости. Этому соответствует пороговое отношение \(\alpha_{\text{ПОР}} \), которое зависит от типа ЧД и индекса моду-
ляции (стандартные ЧД имеют $\alpha_{ПОР} = 3$). Величина $\alpha_{ПОР}$ определяет пороговую чувствительность приемника ЧМ сигналов:

$$\alpha_{ПОР} = \frac{U_{T, ПОР}}{U_Ш} = \frac{U_{Ш, BX} \cdot K_0}{K_0 \sqrt{G_{BX} \Pi_Ш}}.$$ (10.30)

откуда следует, что пороговая чувствительность приемника ЧМ сигналов пропорциональна $\alpha_{ПОР}$:

$$U_{T, BX} = \alpha_{ПОР} \sqrt{G_{BX} \Pi_Ш}.$$ (10.31)

Шумовая полоса может быть принята равной полосе пропускания РЧБ, которая определяется следующим образом:

$$\Pi_Ш = \Pi = 2F_В + 2\Delta f_С + 2\sqrt{F_В \Delta f_С}.$$ (10.32)

Некоторое улучшение пороговой чувствительности может быть получено при использовании метода следящего приема. Известно, что основная мощность ЧМ сигнала сосредоточена в сравнительно узкой активной полосе, положение которой на оси частот изменяется в соответствии с модулирующей функцией. Ширина этой полосы примерно равна удвоенной высшей частоте модуляции ($\Pi = 2F_В$). Выделение активной полосы спектра ЧМ сигнала может быть осуществлено демодулятором с обратной связью по частоте, структурная схема которого совпадает со структурной схемой частотной автоподстройки. Отличие состоит в меньшей инерционности фильтра, что позволяет гетеродину «следить» за отклонением частоты сигнала, которое возникает в процессе модуляции. В результате девиация $\Delta f_{iПР}$ преобразованного сигнала с промежуточной частотой оказывается заметно меньше девиации $\Delta f_С$ входного сигнала:

$$\Delta f_{iПР} = \Delta f_С \left/ \left(1 + S_{УЧ, \phi} \cdot S_{УД} \cdot K_Ф \right) \right.,$$ (10.33)

где $S_{УЧ}$ – крутизна характеристики управляющего узла; $S_{УД}$ – крутизна характеристики частотного детектора; $K_Ф$ – модуль коэффициента передачи фильтра.

Уменьшение девиации при преобразовании частоты позволяет сузить полосу пропускания РЧБ (уменьшить шумовую полосу приемника), что приводит (10.32) к снижению порогового уровня входного сигнала (улучшению чувствительности РПУ).

10.3 Прием импульсных сигналов.

На рис. 10.4 показан вариант типовой структурной схемы РПУ обнаружения импульсных сигналов. Определим общий характер мешающего действия шумовой помехи, считая, что моменты ожидаемого прихода импульсов точно известны и, как следствие, стробирование осуществляется в интервалах, равных длительности отдельных посылок.
Полагая, что за короткие интервалы стробирования амплитуда квазигармонического колебания (при наличии сигнала и без него) практически не меняется, допустимо рассматривать стробирование как процесс выборки мгновенных значений огибающей квазигармонического колебания, действующего на выходе блока высокой частоты БВЧ. На рис. 10.5 показаны видеоимпульсы (результат детектирования стробированного колебания), которые поступают на вход порогового устройства.

Рис. 10.5. К объяснению принципа работы обнаружителя импульсных сигналов

Данное устройство работает как ограничитель по минимуму, пропуская на свой выход только те импульсы, пиковые значения которых превышают пороговый уровень $U^{*}_{ПОР}$.

Действие шумовой помехи вызывает случайные ошибки двух видов:

а) «ложные срабатывания», которые возникают в отсутствие импульса из-за регистрации приемником его наличия («Л» на рис. 10.5);

б) «подавление сигнала» – появляется, когда при наличии импульса сигнала приемник регистрирует его отсутствие («П» на рис. 10.5).

Вероятность ложного срабатывания

$$P_{Л} = \int_{U_{ПОР}}^{\infty} W(U_{ШШ}) dU_{ШШ},$$

где $W(U_{ШШ})$ – релеевская плотность вероятности амплитуд стробированного шума, равная
\[W(U_{\text{ш}}) = (U_{\text{пор}} / U_{\text{ш}}^2) \exp[-U_{\text{пор}}^2 / 2U_{\text{ш}}^2], \] \tag{10.35}

\[U_{\text{пор}} = U_{\text{пор}}^* \cdot K_D \] — пороговый уровень, приведенный к выходу блока высокой частоты.

После подстановки (10.35) в (10.34) получим:

\[P_L = \exp\left(-U_{\text{пор}}^2 / 2U_{\text{ш}}^2\right). \] \tag{10.36}

Вероятность подавления сигнала

\[P_H = \int_0^{U_{\text{пор}}} W(U_{C+Ш}) dU_{(C+Ш)}, \] \tag{10.37}

где плотность вероятности амплитуды сигнала и шума подчиняется закону Райса:

\[W(V) = \frac{V}{U_{\text{ш}}^2} J_0 \frac{VU_C}{U_{\text{ш}}^2} \exp \left[-\frac{(V^2 + U_C^2)}{2U_{\text{ш}}^2} \right], \quad V \approx U_C + U_{\text{ш}}. \] \tag{10.38}

В большинстве случаев допускается сравнительно малый уровень ошибок, что обеспечивается при \(\alpha \geq 3 \). При таком значении \(\alpha \) распределение Райса приближается к нормальному, и тогда справедливо

\[P_H = \Phi(X_{\text{пор}}), \quad X_{\text{пор}} = \frac{U_{\text{пор}} - U_{\text{ш}}}{U_{\text{ш}}}, \] \tag{10.39}

где \(\Phi(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} \exp(-t^2/2) dt \) — интеграл вероятностей.

Выражения (10.36) и (10.39) дают возможность провести анализ помехоустойчивости приемника заданной структуры.

Интерес представляет оценка предельно достижимой помехоустойчивости при приеме заданного сигнала. Полностью устранить ошибку из-за наличия помех принципиально невозможно. Поэтому можно говорить о получении минимально возможного уровня ошибок. Приемник, обеспечивающий такой минимальный уровень ошибок, называют оптимальным, а его помехоустойчивость – потенциальной.

Допустим, что сообщение \(X \) передается с помощью сигнала \(U_C(t) \). Всем ожидаемым при приеме значениям \(X \) заранее можно приписать некоторую априорную плотность вероятности \(P(x) \). В точке приема за ограниченное время \(T \) наблюдается колебание \(y(t) = U_C(t) + U_{\text{ш}}(t) \), содержащее как сигнал \(U_C(t) \), так и шумовую помеху \(U_{\text{ш}}(t) \), которая не позволяет абсолютно точно воспроизвести переданное сообщение \(X^* \). В результате оптимальной обработки колебания \(y(t) \) получается дополнительная информация о сообщении \(X \), каждому значению которого придается новая плотность вероятности \(P_Y(x) \), которую называют апостериорной.
Оценка \hat{X} принимаемого сообщения производится в зависимости от принятого критерия оптимальности. Так, при критерии минимума среднеквадратической ошибки оценкой \hat{X} является среднее значение \bar{X}, определяемое функцией $P_Y(x)$. При большом отношении сигнал-шум этот критерий совпадает с критерием максимума апостериорной вероятности, при котором оценкой \hat{X} служит абсцисса максимума функции $P_Y(x)$ (рис. 10.6).

Рис. 10.6. Априорная и апостериорная плотность вероятности

В таком случае, когда в сигнале неизвестен только один информативный параметр, несущий сообщение X, апостериорная плотность вероятности определяется в виде

$$P_Y(x) = K \cdot P(x) \cdot e^{q_X} \cdot e^{-Q_X|G},$$

где K – постоянный коэффициент; Q_X – энергия сигнала; G – спектральная плотность помехи; q_X – величина, определяющая взаимную корреляцию колебаний $y(t)$ и всех возможных образцов сигнала $U_X(t)$:

$$q_X = \frac{2}{G} \int_0^T y(t) \cdot U_X(t)dt.$$

При обнаружении бинарного сигнала типа «1-0» его информативный параметр (амплитуда A) может принимать два условных значения: $A_1 = 1$ и $A_2 = 0$, соответствующие двум возможным сообщениям x_1 (сигнал есть) и x_2 (сигнал нет). Априорные вероятности отсутствия сигнала $P(0)$ и наличия сигнала $P(1)$ считаются известными. Так как бинарный сигнал содержит только два дискретных сообщения x_1 и x_2, то апостериорные вероятности этих сообщений так же определяются двумя значениями $P_Y(1)$ и $P_Y(0)$. Сопоставление этих значений в интервале наблюдения T дает возможность принимать решение о наличии или отсутствии сигнала на входе РПУ. Ошибки в оценке сообщения характеризуются...
ются вероятностями ложного срабатывания $P_{л}$ и подавления сигнала P_{II}. При оптимальном обнаружении эти вероятности минимальны и равны

$$P_{л} = 1 - \Phi(\alpha_1), \quad \alpha_1 = \frac{\ln[\frac{P(0)}{P(1)}] + Q/G}{\sqrt{2Q/G}},$$

$$P_{II} = 1 - \Phi(\alpha_2), \quad \alpha_2 = -\frac{\ln[\frac{P(0)}{P(1)}] + Q/G}{\sqrt{2Q/G}}.$$ \hspace{1cm} (10.42, 10.43)

Результирующая ошибка при приеме бинарного сигнала определяется следующим образом:

$$P_{ош} = P_{л} \cdot P(0) + P_{II} \cdot P(1).$$ \hspace{1cm} (10.44)

Минимум $P_{ош}$ используется в качестве критерия идеального наблюдателя. В данном случае он совпадает с критерием максимума апостериорной вероятности.

Алгоритм оптимальной обработки принятого колебания $y(t)$ определяется выражением (10.40) и состоит в последовательном вычислении значения $P_y(x)$ для каждого образца сигнала $U_X(t)$ с оценкой принятого сообщения – определение такого значения X, при котором величина $P_y(x)$ максимальна. Основа данного алгоритма – вычисление интеграла (10.41) с помощью блока, структурная схема которого показана на рис. 10.7.

Основной блок оптимальной структуры представляет собой линейный фильтр, который описывается импульсной $\eta(t)$, амплитудно-частотной $K(\omega)$ и фазочастотной $\psi(\omega)$ характеристиками:

$$\eta(t) = U_C(T - t), \quad K(\omega) = S(\omega), \quad \psi(\omega) = -\omega T - \phi(\omega).$$ \hspace{1cm} (10.45)

где $S(\omega), \phi(\omega)$ – амплитудный и фазовый спектры соответственно.

Так как все характеристики такого фильтра полностью определяются сигналом, то фильтр называют согласованным с сигналом (или просто согласованным). Следовательно, основной блок (рис. 10.7) можно заменить согласован-
ным фильтром и коммутирующим устройством, включающим его на время наблюдения T.

Один из способов реализации квазиоптимальных структур обработки одиночных импульсов основан на сходстве формы АЧХ УПЧ приемника и огибающей амплитудного спектра сигнала. Роль квазисогласованного фильтра при этом выполняет УПЧ приемника, а функции коммутирующего устройства – стробируемый каскад этого УПЧ. Если наибольшее отношение сигнал-шум на выходе УПЧ $(C/\overline{I})_{\text{Реал}}$ достигается изменением полосы пропускания УПЧ приемника, то степень приближения согласования по полосе к оптимальному согласованию оценивается отношением

$$\rho = \frac{(C/\overline{I})_{\text{Реал}}}{(C/\overline{I})_{\text{Опт}}},$$

которое определяется при отсутствии стробирования (рис. 10.8). Кривые на этом рисунке относятся к случаям, приведенным в табл.10.1.

![Diagram](image)

Рис.10.8. К использованию квазисогласованного фильтра

Если сигнал представляет собой пачку импульсов, то основной способ повышения помехоустойчивости приема заключается в использовании метода накопления. Один из вариантов квазиоптимальной структуры применительно к обнаружению некогерентной пачки импульсов представляет собой комбинацию стробируемого УПЧ, согласованного по полосе со спектром одиночного импульса пачки, и синхронного накопителя, включенного после амплитудного детектора (рис.10.9).

Таблица 10.1

<table>
<thead>
<tr>
<th>Номер кривой</th>
<th>Форма импульса</th>
<th>Форма АЧХ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Прямоугольная</td>
<td>Прямоугольная</td>
</tr>
<tr>
<td>2</td>
<td>Гауссова</td>
<td>Гауссова</td>
</tr>
<tr>
<td>3</td>
<td>Прямоугольная</td>
<td>Гауссова</td>
</tr>
<tr>
<td>4</td>
<td>Прямоугольная</td>
<td>Одиничный контур</td>
</tr>
</tbody>
</table>
Принятие решения о наличии сигнала производится по превышению порогового уровня \(U_{\text{пор}} \) выходным напряжением синхронного накопителя, который состоит из линии задержки с временем, равным периоду повторения \(T_n \) импульсов в пачке и сумматора, на выходе которого в момент окончания сигнала фиксируется результат накопления всех \(n \)-импульсов в пачке.

Синхронный накопитель по отношению к прямоугольной пачке видеоимпульсов является согласованным фильтром, так как импульсная характеристика синхронного накопителя может рассматриваться как зеркальное изображение импульсов.

Выигрыш в отношении сигнал – шум по мощности, обеспечиваемый синхронным накопителем, равен числу накапливаемых импульсов \(n \). Дело в том, что в момент окончания пачки на выходе синхронного накопителя пиковая мощность сигнала возрастает по сравнению с входом в \(n^2 \) раз. Мощность шума в этот момент так же увеличивается, но только в \(n \) раз, так как шумовые напряжения на выходах линий задержки в отличие от сигнала некоррелированы между собой.

Если ожидаемый момент прихода пачки импульсов известен точно и в УПЧ приемника производится стробирование в пределах пачки на время длительности отдельных импульсов, то задача накопителя сводится к непосредственному суммированию видеоимпульсов, амплитуды которых пропорциональны выборкам огибающей квазигармонического колебания на выходе УПЧ. Такую функцию способен выполнить обычный интегратор, например, на основе пикового детектора, постоянная времени \(\tau \), нагрузка которого выбирается из условия \(\tau \gg T \) (\(T \) - длительность пачки). В момент времени \(T \) окончание ожидаемого сигнала на выходе интегратора фиксируется случайное напряжение \(V \), пропорциональное сумме \(n \) независимых выборок квазигармонического сигнала. Так как \(n \gg 1 \), то случайное напряжение \(V \) распределено по закону, близкому к нормальному

\[
W(V) = \frac{1}{\sigma_V \sqrt{2}} \cdot \exp \left[-\frac{(V - \overline{V})^2}{2\sigma_V^2} \right]
\]
(10.47)
Среднее значение \overline{V} и дисперсии σ^2_V определяются как суммы средних значений и дисперсий отдельных слагаемых: в отсутствии сигнала ($V=V_{III}$)

$$V = V_{III} = n \cdot (1,25 \cdot K \cdot U_{III}),$$
$$\sigma^2_V = \sigma^2_{m} = n \cdot (0,43 \cdot K^2 \cdot U_{III}^2),$$

а при наличии сигнала ($V=V_C$)

$$\overline{V} = \overline{V}_C = n \cdot (M(a) \cdot K \cdot U_{III}),$$
$$\sigma^2_V = \sigma^2_{c} = n \cdot (K^2 \cdot U_{III}^2 \cdot N^2(a)), $$

где $K = K_D \cdot K_U$, где K_U – коэффициент передачи интегратора.

Вероятность ложных срабатываний и подавлений сигнала

$$P_L = 1 - \Phi(x_1), \quad x_1 = \frac{U_{ПОР} - \overline{V}_{III}}{\sigma_{III}},$$
$$P_L = 1 - \Phi(x_2), \quad x_2 = \frac{U_{ПОР} - \overline{V}_C}{\sigma_{C}},$$

где $К = K_{D} K_{U}$, где K_{U} – коэффициент передачи интегратора.

Примеры решения задач

Пример 10.1. Начиная с какой мощности сигнала, отношение сигнал – помеха на выходе ЧД станет больше, чем на его входе? Определить это увеличение, если полоса пропускания РЧБ равна 100 кГц; верхняя частота модуляции $F_B = 10$ кГц, спектральная плотность входного шума $G_{ВХ} = 5 \cdot 10^{-13}$ Вт/Гц.

Решение.

1. Выигрыш реализуется при

$$a = \sqrt{\frac{2 \cdot P_c}{G_{Вых} \cdot П_{Ш.РЧБ}}} = 3,$$

откуда $P_c = 45 \cdot 10^{-8}$ Вт.

2. Для определения выигрыша используем

$$(C/Ш)_{Ш.Вых} = \frac{U_{шм} \cdot \Psi \cdot \sqrt{3}}{2 \cdot G \cdot F_B} = U_{шм} \cdot \Psi \cdot \frac{3 \Psi}{U_{Ш}},$$

следовательно, выигрыш

$$\frac{(C/Ш)_{Вых}}{(C/Ш)_{Вх}} = \Psi \cdot \sqrt{3 \Psi} = 54,7.$$

Пример 10.2. Приемник ЧМ сигналов принимает сигнал с верхней частотой модуляции $F_B = 15$ кГц; полоса пропускания РЧБ 210 кГц. Необходимо, применяя метод следящего приема, получить пороговый уровень чувствительность.
ноти в 1,5 раза. Найти требуемый коэффициент передачи фильтра в цепи обратной связи при следующих параметрах ЧД и управляющего напряжения:

\[S_{u/2} = 2,5 \text{ МГц}/\text{В}, \quad S_{uv} = 1,2 \text{ МГц}/\text{В} \]

Решение.

1. Используя (10.32), определим \(\Delta f_c = 60 \text{ кГц}, \quad \Psi = 4 \).
2. Снижение порогового уровня в 1,5 раза дает новые значения

\[\Pi = 210/1,52 = 93,3 \text{ кГц}; \quad \Psi = 1,075 \quad \text{и} \quad \Delta f = 16,13. \]
3. Используя (10.53), находим \(K_{d} = 0,91 \).

Задачи

10.1. На входе приемника ЧМ сигналов действует сигнал с мощностью \(P_c = 4,5 \cdot 10^{-8} \text{ Вт} \) и приведенный к входу шум со спектральной плотностью \(10^{-3} \text{ Вт/Гц} \). Шумовая полоса приемника \(\Pi_{ШШ} = 100 \text{ кГц} \). Возможно ли повышение помехоустойчивости при увеличении девиации частоты и, соответственно, полосы пропускания в 7 раз? Частота модуляции остается без изменения.

(Ответ: нет, так как при увеличении \(\Pi_{ШШ} \) в 7 раз, отношение сигнал - помеха снизится с 5 до 1,1 и окажется существенно меньше порогового \((a_{ПР}=3) \).

10.2. С какой мощностью сигнала соотношение сигнал – помеха на выходе УНЧ ЧМ приемника станет больше этого соотношения РЧБ? Во сколько раз пройдет увеличение, если \(\Delta f = 100 \text{ кГц}; \quad F = 10 \text{ кГц}; \quad \Gamma_{ВХ} = 5 \cdot 10^{-13} \text{ Вт/Гц}; \quad \Pi_{ШШ.РЧБ} = 200 \text{ кГц}; \quad \Pi_{ШШ.УНЧ} = 10 \text{ кГц} \)?

(Ответ: при \(a_{ПР}=4; \quad P_c = 4,5 \cdot 10^{-8} \text{ Вт} \). Отношение сигнал – помеха на выходе больше этого отношения на входе в 55 раз).

10.3. Отношение амплитуды несущей АМ сигнала к среднеквадратическому напряжению входного шума РПУ равно 5. Нужен ли переход к частотной модуляции с индексом модуляции \(\Psi = 10 \) для повышения помехоустойчивости при неизменной мощности передатчика?

(Ответ: переход к ЧМ не имеет смысла, так как среднеквадратическое напряжение шума на выходе РЧБ возрастает в \(\Psi^{1/2} = 3,2 \) раза и, как следствие, отношение сигнал – помеха уменьшится до \(a = 1,6 \).)

10.4. Оценить выигрыш в помехоустойчивости при использовании метода предыскажений, если восстанавливающий фильтр в приемнике ЧМ сигналов представляет собой однозвездную RC-цепь с постоянной времени 50 мкс. Выигрыш определить по изменению уровня шума на выходе УНЧ приемника, считая, что АЧХ УНЧ имеет прямоугольную форму полосой 12 кГц.

(Ответ: 6,76 дБ).

10.5. РПУ предназначен для приема бинарного импульсного сигнала (1–0), известного точно. Мощность сигнала \(P_c = 2 \cdot 10^{-13} \text{ Вт} \). Эквивалентная шу-
мовая температура антены 85 К. Коэффициент шума РПУ равен 18. Импульс сигнала длительностью 1,5 мкс имеет прямоугольную форму огибающей. Априорная вероятность действия импульса сигнала на входе РПУ 0,35. Найти вероятность правильного обнаружения сигнала при его оптимальной обработке.

(Ответ: \(P_{pb} = 0,93 \)).

10.6. При переходе от амплитудной модуляции к частотной с сохранением неизменной мощности сигнала достаточно иметь выигрыш в соотношении сигнал – помеха не менее 26 дБ. Полагая среднее значение коэффициента модуляции равным 0,5, определить, при каком индексе модуляции можно получить такой выигрыш.

\[(\text{Ответ: } \Psi = (m \cdot Q) \sqrt{3 \cdot \left(1 + \frac{m^2}{2}\right)} = 5,4). \]

10.7. Для повышения помехоустойчивости амплитудная модуляция сигналов \((F_B = 1 \text{ кГц}; m = 0,4)\) заменяется частотной при такой же мощности сигнала. Рассчитать наименьшую полосу пропускания приемника ЧМ сигнала, при котором выигрыш в помехоустойчивости составит 20 дБ.

\[(\text{Ответ: } \Pi = 2 \cdot F_B \cdot (1 + \Psi + \sqrt{\Psi}) = 9,43 \text{ кГц}, \Psi = 2,2). \]

10.8. Определить выигрыш помехоустойчивости при переходе от амплитудной модуляции \((m = 0,5)\) к частотной \((\Psi = 5)\) при неизменной амплитуде несущей.

\[(\text{Ответ: } 3(C/\Pi)_{\Psi-M} / (C/\Pi)_{A-M} = \Psi \cdot \frac{3^{0,5}}{m} = 17,32). \]

10.9. РЧБ приемника с полосой пропускания 5 МГц имеет гауссовскую АЧХ и находится под воздействием одиночных радиоимпульсов гауссовой формы с длительностью 0,06 мкс. Как изменится помехоустойчивость РПУ, если длительность импульсов принять равной 0,24 мкс?

(Ответ: помехоустойчивость не изменится).

10.10. На входе приемника ЧМ сигналов с полосой пропускания РЧБ 120 кГц действует сигнал с амплитудой несущей \(U_{c,BX} = 70 \text{ мкВ} \) и реализующей шум со спектральной плотностью \(G_{BX} = 3,3 \cdot 10^{-15} \text{ В}^2/\text{Гц} \). Возможно ли увеличение отношения сигнала – помеха на выходе РПУ при использовании метода следящего приема?

(Ответ: нет, так как при заданных условиях \(a = (U_c / U_{\Pi})_{BX} = 3,5 \)).

10.11. Квазиоптимальный приемник одиночных радиоимпульсов с прямоугольной огибающей имеет РЧБ с гауссовой формой АЧХ и полосой пропускания 2 МГц. В каких пределах возможно изменение длительности импульсов с гауссовой формой огибающей, при приеме которых помехоустойчивость РПУ не изменится?
(Ответ: 0,2 … 0,5 мкс).

10.12. Приемник АМ сигналов с коэффициентом шума $\eta = 18$ принимает сигнал с мощностью $P_C = 2 \cdot 10^{-14}$ Вт. Шумовая температура антенны $T_A = 300$ К. АЧХ РЧБ прямоугольная с полосой пропускания 2,4 МГц. Можно ли считать детекторную характеристику линейной?

(Ответ: $a = 0,47$, детекторная характеристика является квадратичной).

10.13. Приемник АМ сигналов предназначен для приема сигналов с верхней частотой модуляции $F_B = 6$ кГц. На входе РПУ действует сигнал с амплитудой несущей $U_C = 0,1$ мВ и результирующий шум со спектральной плотностью $G_{VX} = 3,33 \cdot 10^{-14}$ В2/Гц. Оценить целесообразность использования в РПУ синхронного детектирования.

(Ответ: $a = 5$, следовательно, переход к синхронному детектированию нецелесообразен).

10.14. На входе приемника ЧМ сигналов действует сигнал мощностью $P_{C, VX} = 4 \cdot 10^{-12}$ Вт и результирующий шум со спектральной плотностью $G_{VX} = 4,17 \cdot 10^{-18}$ В2/Гц, индекс модуляции $\Psi = 7$, верхняя частота модуляции $F_B = 5$ кГц. Как изменится соотношение сигнал – помеха на выходе РПУ при переходе к методу следящего приемника?

(Ответ: не изменится, так как в исходных условиях $a = 4$).

10.15. Объяснить, какие нежелательные побочные явления кроме ослабления сигнала возникают при синхронном детектировании АМ сигнала из-за фазового рассогласования опорного напряжения и несущей сигнала?

10.16. Определить предельно достижимый выигрыш в пороговой чувствительности приемника ЧМ сигналов при использовании метода следящего приема.

\[
\left(\text{Ответ: } \frac{P}{P_{MIN}} = \sqrt{1+\Psi^2+\Psi} \right).
\]

10.17. Момент возможного действия импульса сигнала на вход РПУ (рис. 10.10) считается известным. Длительность стробирующих импульсов в последнем каскаде УПЧ равна длительности импульсов сигнала (1 мкс). Определить пороговое напряжение $U^*_{Pор}$, при котором вероятность $P_{Ложного}$ ложного срабатывания детального импульса сигнала 0,25.

(Ответ: $U^*_{Pор} = 5$ В)

10.18. Квазиоптимальный приемник одиночных импульсов с прямоугольной огибающей и длительностью 0,25 мкс имеет высокочастотный блок с гауссовой АЧХ и полосой пропускания 2 МГц. Определить максимальную длительность импульсов с гауссовой огибающей, при приеме которых помехоустойчивость РПУ не ухудшится.

(Ответ: 0,6 мкс).
10.19. Приемник некогерентной пачки импульсов содержит синхронный накопитель и работает с коэффициентом различимости $D = 0,5$. Число импульсов в пачке 100. Эффективное напряжение шума на выходе блока ВЧ 0,8 В. Коэффициенты передачи детектора импульсов и накопителя соответственно равны 0,5 и 0,04. Определить пороговое напряжение на выходе синхронного накопителя, при котором ошибки ложного срабатывания и подавления, определяемые на интервале длительности пачки, одинаковые. Найти вероятность этих ошибок.

(Ответ: $U_{ПОР} = 2,2$ В; $P_{л} = P_{п} = 0,11$).
11 ПОМЕХОУСТОЙЧИВОСТЬ РАДИОУПРАВЛЯЕМЫХ УСТРОЙСТВ ПО ОТНОШЕНИЮ К ШИРОКОСПЕКТРАЛЬНЫМ ИМПУЛЬСНЫМ ПОМЕХАМ

11.1 Характеристики импульсных помех

Широкоспектральными импульсными помехами называют такие, ширина спектра которых несоизмеримо больше полосы пропускания РПУ. К ним относятся, прежде всего, промышленные (индустриальные) помехи и атмосферные (грозовые) разряды. Наиболее типичные формы этих помех – апериодическая и периодическая.

Апериодическая помеха (рис. 11.1 а) описывается уравнением

\[E(t) = E_0 \cdot \exp (-\lambda t), \quad t \geq 0, \quad (11.1) \]

где \(E_0 \) – либо напряженность поля помехи в точке приема, либо напряжение помехи на входе приемника. Множитель затухания \(\lambda \) определяет длительность импульса помехи.

![Рис. 11.1. Апериодическая помеха](image)

Модуль спектральной плотности апериодической помехи (рис. 11.1 б)

\[S(\omega) = \frac{E_0}{\sqrt{\lambda^2 + \omega^2}}. \quad (11.2) \]

Полупериодическая помеха (рис. 11.2 а) описывается уравнением

\[E(t) = E_0 \cdot \exp (-\lambda t) \cdot \sin(\Omega t), \quad t \geq 0, \quad (11.3) \]

где множитель \(\Omega \) определяет частоту осцилляций полупериодической помехи.

Наличие осцилляций типично для некоторых видов индустриальных помех, когда коммутация токов происходит в цепях с реактивными сопротивлениями. Такие цепи эквивалентны колебательным контурам, в которых коммутируемые токи возбуждают затухающие колебания, излучаемые в окружающее пространство.
Рис. 11.2. Полупериодическая помеха

Модуль спектральной плотности полупериодической помехи определяется следующим образом:

$$ S(\omega) = \frac{E \cdot \Omega}{\sqrt{(\lambda^2 + \Omega^2 + \omega_0^2 + 4\lambda^2 \omega_0^2)}} $$

(11.4)

Длительность импульсов широкоспектральных помех гораздо меньше времени установления блоков высокой частоты РПУ. Поэтому отдельные импульсы помех логично рассматривать как воздействие δ-импульсов. Реакция приемника на действие такого импульса будет описываться собственными колебаниями, возникающими в избирательных цепях блоков высокой частоты после прекращения входного действия. Огибающая импульса помехи на выходе блока высокой частоты с одинаковыми, настроенными в резонанс идентичными контурами

$$ U(\tau) = 2S_0K_0\alpha\frac{\tau^{n-1}}{(n-1)!}e^{-\tau}, $$

(11.7)

где S_0 - спектральная плотность помехи в полосе пропускания блока ВЧ; K_0 - резонансный коэффициент усиления блока ВЧ; $\alpha = \omega_0d/2$ – коэффициент затухания контура; $\tau = \alpha t$ – безразмерное время; n – число каскадов.

Максимум огибающей U_m получается при $\tau = n - 1$.

$$ U_m = 2S_0K_0\alpha\frac{(n-1)^{n-1}}{(n-1)!}e^{n-1}. $$

(11.8)

Если в состав высокочастотного блока входят расстроенные контуры (попарно расстроенные, полосовые фильтры и т.д.), то в форме огибающих выходных импульсов содержатся осцилляции. Так, огибающая импульса помехи на выходе двухкаскадного усилителя с полосовыми фильтрами при оптимальной связи между контурами описывается выражением, содержащим вибрационный множитель

$$ u(\tau) = 4S_0K_0\alpha e^{-\tau}(\sin \tau - \tau \cdot \cos \tau). $$

(11.9)

Первый максимум огибающей $U_m = 0,93 \cdot S_0 \cdot K_0 \cdot \alpha$ соответствует $\tau \approx 2$.

193
11.2 Подавление импульсных помех

Способы борьбы с импульсными помехами РПУ можно разделить на следующие основные группы.

1. Линейная частотная фильтрация, основанная на прямой пропорциональной зависимости амплитуды помехи от полосы пропускания приемника. Следовательно, для ослабления импульсной помехи необходимо сужать полосу пропускания РПУ. При частотной фильтрации амплитуда импульсной помехи уменьшается ценой увеличения ее длительности при постоянной площади помехи.

2. Амплитудная селекция позволяет ослабить импульсную помеху, если ее амплитуда на выходе УПЧ превышает амплитуду сигнала. Часть помехи срезается ограничителем, который уменьшает не только амплитуду помехи, но и ее площадь. При этом, чем шире полоса пропускания усилителя, тем большая часть помехи на выходе ограничителя. Таким образом, перед ограничителем желательно иметь усилитель с широкой полосой пропускания. Недостаток амплитудной селекции в том, что помеха на выходе ограничителя имеет амплитуду, равную амплитуде сигнала.

3. Амплитудно-частотная селекция предполагает использование различия как максимальных значений, так и спектрально-временных свойств сигнала и помехи. Типичным устройством амплитудно-частотной селекции является схема ШОУ (широкополосный усилитель, ограничитель, узкополосный усилитель) (рис. 11.3).

Если помеха представляет собой короткие непрекращающиеся радиоимпульсы, то схема ШОУ существенно увеличивает отношение сигнал – помеха. Пусть, например, на входе приемника действует высокочастотный импульс помехи $U_{II}(t)$ с прямоугольной огибающей, длительностью τ_{II} и амплитудой U_{II} (рис. 11.4 а).
На выходе широкополосного усилителя образуется импульс $U_{Шш}(t)$ с экспоненциальной огибающей. Длительность фронта этого импульса определяется величиной $\tau_П$. Полоса пропускания широкополосного усилителя выбирается с учетом $\tau_П$ и равна $\Pi_{Шш} \leq 1/\tau_П$. Длительность среза определяется полосой пропускания $U_{Шш}$. Ограничитель уменьшает амплитуду и, как следствие, энергию импульсной помехи. На выходе двухстороннего ограничителя помеха представляет собой импульс с трапециoidalной огибающей, амплитудой $U_{ОГР}$ и длительностью $\tau_{ШШ}$ (рис. 11.4 б)

$$
\tau_{ШШ} = \frac{2}{3\Pi_{Шш}} \ln \frac{U_П \cdot K_{Шш}}{U_{ОГР}},
$$

где $K_{Шш}$ — коэффициент усиления широкополосного усилителя; $U_П$ — амплитуда помехи; $U_{ОГР}$ — уровень ограничения.
Данный помеховый импульс воздействует на узкополосный усилитель. Постоянная времени основной фильтрующей системы

\[\tau_y \approx \frac{1}{3\Pi_y} . \quad (11.11) \]

На выходе узкополосного усилителя колебания нарастают в течение времени \(\tau_{\Pi_H} \) и в момент времени \(t = \tau_{\Pi_H} \) амплитуда колебаний на выходе максимальна и равна

\[U_{\Pi,вых} = K_y \cdot U_{OGR} \cdot \left[1 - \exp\left(-\frac{\tau_{\Pi_H}}{\tau_y} \right) \right] = K_y \cdot U_{OGR} \cdot \left[1 - \exp\left(-\frac{2\Pi_y \cdot \ln U_{\Pi} \cdot K_{\Pi}}{\Pi_{\Pi_H} U_{OGR}} \right) \right], \quad (11.12) \]

где \(K_y \) – коэффициент узкополосного усилителя.

На выходе системы ШОУ сигнал превосходит помеху

\[\left(\frac{U_C}{U_{\Pi}} \right)_{вых} = \left[1 - \exp\left(-\frac{2\Pi_y \cdot \ln U_{\Pi} \cdot C_{\Pi}}{U_{\Pi} \cdot C_{\Pi}} \right) \right]^{-1} \quad (11.13) \]

Последнее выражение позволяет найти соотношение между полосами пропускания \(\Pi_{\Pi_H} \) и \(\Pi_y \), при котором обеспечивается требуемое превышение сигнала над помехой на выходе схемы ШОУ для заданных интенсивностей сигнала и помехи на входе приемника. Например, требование получить на выходе \((U_C/U_{\Pi})_{вых}\geq2 \) при \((U_{\Pi}/U_C)_{вых}=10 \) приводит к необходимости выполнения неравенства \(\Pi_{\Pi_H}/\Pi_y\geq7 \).

Рассмотренный случай справедлив для прихода сигналов и помех в разные моменты времени.

При воздействии импульсной помехи на непрерывно существующий сигнал для случая, когда

\[\Pi_{\Pi_H} < \Pi_y \ll (1/\tau_H) \quad (11.14) \]

можно получить

\[\left(\frac{U_C}{U_{\Pi}} \right)_{вых} = \frac{\Pi_{\Pi_H}}{2\Pi_y \cdot \ln 3\tau_H \Pi_{\Pi_H} \left(\frac{U_{\Pi}}{U_C} \right)_{вых}} \cdot \left(\frac{U_{\Pi}}{U_C} \right)^{-1} \quad (11.15) \]

4. Компенсационные методы, основанные на использовании двух каналов приема: основного (сигнального) и дополнительного (помехового) (рис. 11.5).

Частота настройки помехового канала выбирается вблизи частоты настройки сигнального канала так, чтобы спектральные плотности помехи в обозначенных каналах были бы равны. Если блоки высокой частоты идентичны, то реакции на помеху одинаковые. Это позволяет полностью скомпенсировать помеху в основном канале, и на выходе вычитающего устройства ВУ будет только один сигнал.
Схема, представленная на рис. 11.5, представляет собой амплитудный метод компенсации или компенсацию помехи по огибающей (некогерентный метод).

Рис. 11.5. Структурная схема компенсационного метода

Когерентный метод компенсации предполагает компенсацию помехи по мгновенным значениям в трактах высокой или промежуточной частоты основного (сигнального) и дополнительного (помехового) каналов. Одна из возможных структурных схем, реализующая когерентный метод компенсации, показана на рис. 11.6.

Рис. 11.6. Структурная схема, реализующая когерентный метод компенсации

В данном случае после общего входного блока ОБ следует три фильтра Φ_1, Φ_2, Φ_3. Фильтр Φ_1 настроен на частоту полезного сигнала f_c, а другие фильтры на частоты f_2 и f_3 соответственно. Импульсная помеха создает на выходах фильтров Φ_1 и Φ_2 напряжения, имеющие одинаковые огибающие, но разные частоты заполнения. Смеситель СМ преобразует частоту заполнения f_2 в частоту f_c. На выходе фильтра Φ_4 получается напряжение импульсной помехи с такой же огибающей, что и на выходе фильтра Φ_1. При правильно выбранных параметрах системы на выходе вычитающего устройства ВУ будет практически полная компенсация импульсной помехи. Таким образом, здесь компенсация проходит в линейной части приемника и принципиально данный метод более совершенен.
Трудность в реализации данного метода компенсации заключается в необходимости получения одинаковых по интенсивности и равных (противоположных) по фазе помеховых напряжений на выходах линейной части приемника в основном и помеховом каналах.

Общий недостаток всех компенсационных методов подавления импульсных помех – наличие двух каналов. Дополнительный канал снижает помехоустойчивость компенсационных устройств относительно сосредоточенных и флуктуационных помех.

Примеры решения задач

Пример 11.1. На вход РПУ поступают неперекрывающиеся во времени сигнал в виде прямоугольного радиоимпульса и апериодическая импульсная помеха. Амплитуда сигнала 1 мкВ, длительность \(\tau = 200 \) мкс; амплитуда помехи \(U_n = 1 \) мВ, \(\lambda = 1,0 \) В\(^{-1}\). Избирательность РПУ определяется только УПЧ, состоящим из пяти каскадов с одиночными настроенными контурами и имеющими полосу пропускания 5 кГц. Требуется получить отношение пиковых значений сигнала к помехе на выходе РПУ не менее 10 дБ. На какой частоте это возможно?

Решение.

1. Учитывая

\[
U(\tau) = 2S_0K_\sigma \alpha \frac{\tau^{n-1}}{(n-1)!} e^{-\tau},
\]

составим выражение для отношения сигнал – помеха

\[
\frac{\text{Сигнал}}{\text{Помеха}} = \frac{U_c}{2S \cdot \Pi \cdot \Psi(n)}, \quad \text{где} \quad \Psi(n) = \frac{\pi (n-1)^{n-1} \cdot \exp(1-n)}{(n-1)\sqrt{2} - 1}.
\]

2. Определяем \(E_0 \).

3. Из выражения

\[
S(\omega) = \frac{E_0}{\sqrt{\lambda^2 + \omega^2}}
\]

находим \(f_0 = 7,23 \) МГц.

Пример 11.2. На систему ШОУ поступают АМ сигнал и кратковременная импульсная помеха с прямоугольной огибающей и параметрами \(U_n = 50 \) мкВ, \(\tau_n = 5 \) мкс. Амплитуда сигнала \(U_m = 10 \) мкВ, верхняя частота модуляции \(F_B = 10 \) кГц, коэффициент модуляции \(m = 0,3 \). Допустимое ослабление глубины модуляции выходного сигнала должно быть не менее 3 дБ. Определить коэффициенты усиления и полосы пропускания широкополосного и одноконтурного узкополосного усилителей, а так же выигрыш в отношении сигнал – помеха

\[
q = \left[\frac{(U_m/U_n)_\text{вых}}{(U_m/U_n)_\text{вх}} \right] \quad \text{при разновременном действии сигнала и помехи.}
\]
Напряжение на выходе узкополосного усилителя $U_{m,Вых} = 1$ В. Напряжение на входе ограничителя $U_{ВХ,ОГР} = 10$ мВ, а на выходе $U_{Вых,ОГР} = 0,1$ В.

Решение.
1. Полоса пропускания широкополосного усилителя выбирается из условия $\Pi_1 = (1...2) \tau_\Pi = 300$ кГц
2. Коэффициент усиления широкополосного усилителя
$$ K_{01} = \frac{U_{ВХ,ОГР}}{U_m (1 + m)} = \frac{10 \cdot 10^{-3}}{10 \cdot 10^{-6} (1 + 0,3)} \approx 770. $$
3. Коэффициент усиления узкополосного усилителя
$$ K_{02} = \frac{(U_m / U_{m,Вых})}{(K_{01} \cdot K_{ОГР})} = 13. $$
4. Полоса пропускания узкополосного усилителя
$$ \Pi_2 = 2F_B = 20 \text{ кГц}. $$
5. Выигрыш в отношении сигнал – помеха
$$ q = \left[\frac{(U_m / U_{m,Вых})_{Вых}}{(U_m / U_{m,Вых})_{ВХ}}\right] = 77. $$

Задачи

11.1. На выходе n- каскадного усилителя с одиночными, настроенными в резонанс контурами, действует апериодическая импульсная помеха: $\lambda = 2$ мкс$^{-1}$. Определить изменение максимального значения выходного напряжения усилителя (резонансная частота 1 МГц, полоса пропускания 10 кГц), если перестроить усилитель на 100 кГц без изменения коэффициента усиления для следующих условий: а) эквивалентная добротность контура неизменна; б) полоса пропускания усилителя радиочастоты неизменна.

(Ответ: а) уменьшение в 3,2 раза; б) увеличение в 3,1 раза).

11.2. На вход резонансного усилителя поступают неперекрывающиеся во времени сигнал в виде прямоугольного радиоимпульса длительностью $t_{ПС} = 200$ мкс и апериодическая импульсная помеха. Амплитуды сигнала и помехи равны 1 мкВ и 1мВ соответственно. Постоянная $\lambda = 1$ мкс$^{-1}$. Какой должна быть несущая частота сигнала и соответственно частота настройки усилителя, чтобы на его выходе отношение максимального значения напряжения сигнала к максимальному значению напряжения помехи было не менее 3? Полосу пропускания усилителя принять равной $\Pi = 1/t_{ПС}$.

(Ответ: $f > 5$ МГц).

11.3. На устройство, состоящее из амплитудного ограничителя и одно-контурного резонансного усилителя, действует сигнал и импульсная помеха, имеющие прямоугольные огибающие, одинаковые несущие частоты, совпадающие с резонансной частотой усилителя. Значения амплитуд сигнала и поме-
хии равны 0,1 В и 1 В, а их длительность составляет 1 мс и 0,1 мс соответственно. Какой должна быть полоса пропускания усилителя, чтобы отношение сигнала к помехе на выходе было наибольшим? Какие будут эти отношения, если а) сигнал и помеха подаются непосредственно на вход усилителя (минуя ограничитель); б) сигнал и помеха подаются на ограничитель, а с его выхода на усилитель.

(Ответ: П<<1/\pi t_с; а) U_с/U_п = 1; б) U_с/U_п = 10).

11.4. На вход каскада ШОУ (широкополосный усилитель-ограничитель-узкополосный усилитель) поступают АМ сигнал и кратковременная импульсная помеха. Амплитуда сигнала равна 10 мкВ, частота модуляции 10 кГц, глубина модуляции – 30%. Определить коэффициент усиления усилителей и полосу пропускания узкополосного усилителя, при которых система ШОУ улучшает отношение сигнала к помехе на выходе с учетом допустимого ослабления глубины модуляции на 3 дБ. Характеристика ограничителя: напряжение на выходе изменяется линейно до напряжения на входе U_вх = 10 мВ. При дальнейшем увеличении входного напряжения напряжение на выходе ограничителя постоянно и равно 0,1 В.

(Ответ: K_ош = 750; K_оу =750; \Pi_{0.7} = 20 кГц).

11.5. На приемник с устройством компенсации помех по огибающей (рис. 11.7) действует апериодическая помеха, у которой \lambda = 1 мкс^{-1}.

Рис. 11.7. Приемник с устройством компенсации помех по огибающей

Коэффициенты передачи и полосы пропускания обоих каналов одинаковы. Частота настройки фильтра \Phi_1 \omega_1 = 10^6 с^{-1}, а фильтра \Phi_2 \omega_2 = 2 \cdot 10^6 с^{-1}. Найти максимальную относительную величину не скомпенсированного остатка напряжения на выходе устройства компенсации при действии помехи.

(Ответ: (U_{вых} - U_{вых2})/U_{вых1} = 1 - \sqrt{2/5}).

11.6. На приемник с полосой пропускания высокочастотного блока \Pi = 5 кГц действует широкоспектральная помеха с \lambda = 0,5 \cdot 10^6 В^{-1} и частотой повторения \textit{F}_{вв} = 18 кГц. Можно ли в данном случае считать такую помеху импульсной?

(Ответ: нельзя).

11.7. Объяснить изменение длительности и амплитуды импульса помехи на выходе РПУ от числа каскадов высокочастотного блока.
(Ответ: длительность импульса помехи увеличивается, а амплитуда уменьшается).

11.8. Радиоприемное устройство, чувствительность которого в диапазоне коротких волн меняется по закону \(E = A/f_0 \), находится под воздействием импульсной помехи. На частотах 7,5; 10 и 15 МГц получены соответствующие выходные значения помехи \(U_p \), равные 1,5; 1,3 и 0,5 В. К какому типу относится импульсная помеха?

(Ответ: к полупериодической, так как на частоте 10 МГц ее спектральная плотность имеет максимум).

11.9. Радиоприемник с системой ШОУ принимает сигналы кода Морзе и импульсную помеху. Длительность «точки» \(\tau_1 = 1 \) мс, а импульса «тире» – \(\tau_2 = 3 \) мс. Длительность импульса помехи, близкой к прямоугольной форме, на входе ограничителя \(\tau_p = 10 \) мкс. На входе системы амплитуда помехи существенно больше амплитуды сигнала. Выбрать полосу пропускания узкополосного одноконтурного усилителя и определить отношение сигнал – помеха на выходе системы ШОУ для двух случаев: а) полоса пропускания узкополосного усилителя согласована с длительностью импульса «точки»; б) согласование полосы с длительностью «тире». Сигнал и помеха не совпадают по времени.

(Ответ: а) \(P = 400 \) Гц; Отношение сигнал – помеха для «точки» 90, для «тире» - 225. б) \(P = 133 \) Гц; Отношение сигнал – помеха для «точки» 90, для «тире» - 270).

11.10. Радиоприемное устройство с чувствительностью 170 мкВ/м настроено на резонансную частоту \(f_0 = 382 \) кГц. Антенна штыревая длиной \(l = 1,2 \) м. Избирательность приемника определяется двухкаскадным УПЧ с полосовым фильтром (фактор связи \(\beta = 1 \)). Полоса пропускания УПЧ \(P = 9 \) кГц. Выходное напряжение \(U_{\Omega} \), соответствующее чувствительности при глубине модуляции \(m = 0,5 \) равно 1 В. Определить отклик приемника на полупериодическую импульсную помеху с параметрами: \(E_0 = 0,83 \cdot 10^{-8} \) В/(Гц·м), \(\lambda = 0,33 \) мкс\(^{-1} \), \(\Omega = 1 \) мкс\(^{-1} \). (Расчет произвести используя выражение (11.9), где \(S_0 = 0,21 \cdot 10^{-8} \) В/Гц, \(a = 25 \cdot 10^{-3}, K_0 = 2 \cdot 10^4 \). Построить график отклика).

11.11. На приемник с системой компенсационного подавления помех действует апериодическая импульсная помеха с параметром \(\lambda = 1,5 \) мкс\(^{-1} \). Коэффициент усиления и полосы пропускания обоих каналов одинаковые. Частота настройки сигнального канала \(\omega_0 = 2 \cdot 10^6 \) с\(^{-1} \). Рассчитать амплитуду некомпенсированной помехи на выходе приемника.

(Ответ: \(\delta = 1 - \sqrt{\left(\frac{\lambda^2 + \omega_0^2}{\lambda^2 + \omega_{01}^2}\right) / \left(\frac{\lambda^2 + \omega_0^2}{\lambda^2 + \omega_{02}^2}\right)} = 0,37)\).

11.12. В приемнике с системой компенсационного подавления помех в процессе эксплуатации полоса пропускания помехового канала стала несколько
шире полосы пропускания сигнального канала при сохранении площади усиления. Изобразить примерную форму выходного напряжения помехи. Считать, что в состав блоков высокой частоты обоих каналов входят одиночные контуры, настроенные в резонанс.

(Ответ: формы импульсов помехи на выходах каналов и форма некомпенсированного остатка представлена на рис. 11.8 а, б соответственно).

Рис.11.8. Формы импульсов помехи на выходах каналов (a) и форма некомпенсированного остатка (b)
12 СИСТЕМЫ АВТОМАТИЧЕСКОЙ РЕГУЛИРОВКИ УСИЛЕНИЯ

Для обеспечения в процессе эксплуатации требуемых характеристик приемника и наилучших условий приема используются различные регулировки. Широкое применение нашли системы автоматической регулировки усиления (АРУ), которые делятся на: а) простые АРУ; б) задержанные АРУ; в) задержанные и усиленные АРУ. В зависимости от способа подачи регулируемого напряжения АРУ подразделяются на обратные, прямые и комбинированные (рис. 12.1 a, b, в соответственно).

![Рис. 12.1. Системы автоматической регулировки усиления](image)

В общем случае в состав цепи обратной связи системы АРУ входят (рис.12.2) детектор АРУ (Дару), фильтр нижних частот (ФНЧ), усилитель высокой частоты (У) и усилитель постоянного тока (УПТ). Для реализации задержанной АРУ применяется специальная цепь задержки.

![Рис. 12.2. Цепь обратной связи системы АРУ](image)

Система АРУ обеспечивает в приемнике максимальное усиление в том случае, когда принимается слабый сигнал. Это приводит к увеличению уровня шумового напряжения на выходе РПУ. Для устранения данного явления применяются бесшумные АРУ (рис.12.3), когда создается специальная цепь с бесшумной регулировкой БШР, управляемая регулировочным напряжением \(U_p \). Если \(U_p \) оказывается ниже определенного уровня, то цепь БШР вырабатывает напряжение, при котором \(E_3 \) становится равным нулю, УМЧ отпирается и работа приемника восстанавливается.
Работа регулируемого усилителя совместно с цепью АРУ описывается характеристикой АРУ (рис. 12.4), показывающей зависимость выходного напряжения от входного $U_{\text{ВЫХ}} = \varphi(U_{\text{ВХ}})$ - амплитудной характеристикой регулируемого усилителя.

В структурной схеме АРУ (рис. 12.1 а) напряжение регулировки U_p получается в результате детектирования входного напряжения. При увеличении входного напряжения $U_{\text{ВХ}}$ напряжение на выходе детектора АРУ возрастает, следовательно, увеличивается U_p, что вызывает уменьшение коэффициента усиления K_0. Таким образом, если $U_{\text{ВХ}}$ увеличивается, то K_0 уменьшается и их произведение $U_{\text{ВЫХ}} = K_0 U_{\text{ВХ}}$ может оставаться постоянным. Прямая АРУ позволяет, в принципе, получить идеальную характеристику регулировки (рис. 12.4). Прямая АРУ имеет ряд недостатков, основной из которых состоит в необходимости включения перед детектором в цепи АРУ дополнительного усилителя с большим коэффициентом усиления. Прямая АРУ нестабильна. Если, например, из-за изменения температуры или напряжения источника питания коэффициент усиления K_0 регулируемого каскада увеличивается, то характеристика АРУ из идеальной превратится в характеристику с нарастающим $U_{\text{ВЫХ}}$ (рис. 12.5).
При использовании обратной АРУ (рис. 12.1 б) напряжение регулировки U_P получают из напряжения на выходе регулируемого каскада $U_{\text{ВЫХ}}$. Напряжение U_P подается со стороны выхода в направлении входа регулируемого усилителя. Детектор АРУ обеспечивает напряжение U_P на его выходе, пропорциональное амплитуде напряжения $U_{\text{ВЫХ}}$. Таким образом, $U_P = K_D U_{\text{ВЫХ}}$ (здесь K_D – коэффициент передачи детектора АРУ).

Фильтр АРУ (Φ) отфильтровывает составляющие частот модуляции и пропускает медленно меняющиеся составляющие напряжения U_P. Цепь АРУ, состоящую только из детектора и фильтра, называют простой АРУ, а при наличии усилителя – усиленной АРУ.

Особенность обратной регулировки заключается в том, что она не позволяет получить идеальную характеристику АРУ, так как для работы АРУ принципиально необходимо приращение выходного напряжения $\Delta U_{\text{ВЫХ}} = 0$, и тогда: $U_P = \text{const}$, $K_0 = \text{const}$, регулировка отсутствует и выходное напряжение должно возрастать.

В структурной схеме комбинированной АРУ (рис. 12.1 в) рационально используются преимущества прямой и обратной схемы АРУ: стабильность обратной АРУ и возможность получения идеальной характеристики прямой АРУ.

Система АРУ характеризуется следующими динамическими параметрами:

1. Динамический диапазон входных сигналов

$$D_{\text{ВХ}} = 20 \log \left(\frac{U_{\text{ВХ,max}}}{U_{\text{ВХ,min}}} \right).$$

где $U_{\text{ВХ,min}}$, $U_{\text{ВХ,max}}$ – минимальная и максимальная амплитуда входного сигнала.

Минимальная амплитуда входного сигнала определяется, как правило, чувствительностью приемника или соответствует началу работы системы АРУ с задержкой.

2. Динамический диапазон выходных сигналов

$$D_{\text{ВЫХ}} = 20 \log \left(\frac{U_{\text{ВЫХ,max}}}{U_{\text{ВЫХ,min}}} \right).$$

3. Необходимый диапазон регулировки усиления

$$D_{\text{РУ}} = D_{\text{ВХ}} - D_{\text{ВЫХ}}.$$

Динамику работы системы АРУ характеризует постоянная времени

$$\tau_{\text{АРУ}} = \frac{\tau_{\Phi}}{1 + N},$$

где $\tau_{\Phi} = R_{\Phi}C_{\Phi}$ – постоянная времени однозвенного фильтра АРУ; N – глубина обратной связи, зависящая от уровня входного сигнала и параметров системы АРУ.
К статическим характеристикам системы АРУ относятся амплитудная характеристика регулируемого усилителя (рис. 12.4) и регулировочная характеристика, представляющая собой зависимость коэффициента усиления регулируемого каскада от регулирующего (управляющего) напряжения \(K = \varphi(U_P) \).

12.1 Регулировочные характеристики усилителей

В усилителях на биполярных транзисторах общего применения уменьшение усиления каскада достигается снижением тока эмиттера. Режим транзистора по постоянному току изменяется регулировкой напряжения на базе. Вид регулировочной характеристики термостабильного каскада зависит от сопротивления транзистора в цепи эмиттера \(R_3 \).

Если \(R_3 > 200 \) Ом, то

\[
K = K_{\text{max}} \cdot \left(1 - \frac{U_P}{U_{\text{БМ}}} \right),
\]

где \(U_{\text{БМ}} \) – напряжение между базой и землей при максимальном усилииении \((K_{\text{max}}) \); \(U_P = U_{\text{БМ}} - U_B \) (\(U_B \) – текущее значение напряжения на базе транзистора относительно земли).

При малых значениях \(R_3 \) (менее 200 Ом)

\[
K = K_{\text{max}} \cdot \exp \left(-\frac{U_P}{\varphi_T} \right),
\]

где \(\varphi_T = kT/q \) – температурный потенциал \((k \) – постоянная Больцмана; \(T \) – абсолютная температура; \(q \) – заряд электрона).

Если \(T = 293 \) К, то можно принять \(\varphi_T = 25 \) мВ.

Каскодный усилитель по схеме ОЭ-ОБ с последовательным питанием имеет такую же регулировочную характеристику, как и каскад с ОЭ.

Для усилителей на полевых транзисторах крутизна характеристики транзистора зависит от напряжения на затворе

\[
S = S_{\text{max}} \cdot \left(1 - \frac{U_{\text{ЗИ}}}{U_{\text{ОТС}}} \right),
\]

где \(U_{\text{ЗИ}} \) – напряжение затвор-исток; \(U_{\text{ОТС}} \) – напряжение отсечки проходной характеристики.

Зависимость относительных значений крутизны некоторых полевых транзисторов приведена на рис. 12.6.
Рис. 12.6. Характеристики крутизны полевых транзисторов

12.2 Расчет статических характеристик

При расчете статических характеристик используются 2 метода: графоаналитический и аналитический.

Графоаналитический метод предполагает следующие исходные данные:
– минимальная $U_{BX,min}$ и максимальная $U_{BX,max}$ амплитуды входного напряжения, соответствующие началу и концу регулировки и определяющие динамический диапазон входных сигналов $D_{BX,max}$;
– амплитуда и динамический диапазон выходного напряжения $U_{ВыХ,min}$, $U_{ВыХ,max}$ и $D_{ВыХ,max}$ соответственно;
– регулировочные характеристики регулируемых каскадов (в большинстве практических случаев эти характеристики одинаковы).

Порядок расчета

1. Определяется требуемый диапазон регулировки усиления

$$D_{РУ,max} = D_{BX,max} - D_{ВыХ,max}.$$ \hspace{1cm} (12.8)

2. Рассчитывается необходимое число регулируемых каскадов

$$\eta \geq \frac{D_{РУ,max}}{D_{РУi,max}},$$ \hspace{1cm} (12.9)

где $D_{РУi,max}$ – максимальный диапазон регулировки одного i-ого каскада.

3. Округляется n до целого числа в большую сторону и находитя фактическая максимальная глубина регулировки одного каскада ($D_{РУiФ}$), которая оказывается меньше возможной

$$D_{РУiФ} = \frac{D_{РУ,max}}{n}.$$ \hspace{1cm} (12.10)
4. Коэффициент цепи обратной связи определяется из выражения
\[K_{OC} = \frac{U_{P,\text{max}}}{U_{\text{Вых,\text{max}}} - U_{\text{Вых,\text{min}}}}, \]
где \(U_{P,\text{max}} \) – максимальное регулирующее напряжение, обеспечивающее требуемую глубину регулировки на один каскад.

5. В заданном интервале изменения выходного напряжения берется одно из значений \(U_{\text{Вых,j}} \) и вычисляется регулирующее напряжение
\[U_{P,j} = K_{OC} \left(U_{\text{Вых,j}} - U_{\text{Вых,\text{min}}} \right). \]

6. По полученному \(U_{P,j} \) из графика регулировочной характеристики находится глубина регулировки в одном каскаде \(D_{PYij} \) и в \(n \) каскадах
\[D_{PYij} = n D_{PYij}. \]

7. Рассчитывается уровень входного сигнала усилителя.

В каскадах на МОП-транзисторах коэффициент усиления регулируется как по первому, так и по второму затворам. В данном случае возможна прямая и обратная регулировка. При обратной регулировке транзистор закрывается по первому затвору, а при прямой возможны два варианта. В первом варианте (рис. 12.7 а) транзистор открывается по первому затвору с одновременным снижением напряжения на стоке и втором затворе. Регулировочная характеристика для этого варианта приведена рис. 12.7 б.

![Рис. 12.7. Первый вариант прямой регулировки МОП-транзистора](image)

Во втором варианте транзистор регулируется по второму затвору (рис. 12.8 а). Регулировочная характеристика показана на рис. 12.8 б.
Рис. 12.8. Второй вариант прямой регулировки МОП-транзистора

\[D_{\text{ВХ}} = D_{\text{РУ}} + D_{\text{Вых}}, \]

(12.13)

где

\[D_{\text{Вых}} = 20 \lg \left(\frac{U_{\text{Вых}}}{U_{\text{Вых.min}}} \right). \]

Таким образом, определяется одна из точек амплитудной характеристики. Повторив подобную процедуру для нескольких значений выходного напряжения, находитя вся амплитудная характеристика.

Следует отметить, что глубина обратной связи в системе АРУ определяется из следующих выражений:

\[N_j = 0,115 \cdot U_{\text{Вых}} \cdot K_{OC} \left(\frac{d \cdot D_{\text{РУ},j}}{d \cdot U_{\text{Р},j}} \right) \]

(12.14)

или

\[N_j = -U_{\text{Вых}} \cdot K_{OC} \left(\frac{d \cdot \ln K_j}{d \cdot U_{\text{Р},j}} \right). \]

(12.15)

При расчете статических характеристик аналитическим методом необходима аппроксимация регулировочной характеристики. Наиболее универсальна кусочно-линейная аппроксимация, при которой реальная регулировочная характеристика заменяется отрезками прямых (рис. 12.9), каждая из которых характеризуется ординатой \(K_j \) и углом наклона \(\alpha_i \). Амплитудная характеристика для \(i \)-ого отрезка определяется из выражения

\[U_{\text{Вых}} = \frac{K_i + \tan \alpha_i \cdot K_{\text{УПТ}} \cdot U_3 \cdot U_{\text{ВХ}}}{1 + N_i} \cdot U_{\text{ВХ}} \quad \text{при} \quad U_{\text{ВХ}} > U_{\text{ВХ.min}}, \]

(12.16)

где

\[N_i = \tan \alpha_i \cdot K_i \cdot K_{\text{УПТ}} \cdot U_{\text{ВХ}}. \]

(12.17)
Приведенные на рис. 12.9 амплитудные характеристики систем АРУ

Кривые, определяемые (12.16), выпуклые и стремятся к асимптоте

$$\frac{K_i}{\tan \alpha \cdot K_{\lambda} \cdot K_{УПП}}.$$

Построив характеристики, соответствующие отдельным отрезкам, проводится огибающая этих характеристик, которая и представляет искомую амплитудную характеристику.
Аналогично, с учетом (12.17), строится зависимость глубины обратной связи. Наибольший практический интерес представляет линейная и экспоненциальная аппроксимация регулировочных характеристик каскадов.

При линейной регулировочной характеристике регулируемых каскадов справедливы следующие соотношения.

Для усилителя с n каскадами:

$$K = K_m \left(1 - \frac{U_P}{U_{Pm}}\right),$$

$$D_{PV} = -20n \log \left(1 - \frac{U_P}{U_{Pm}}\right) = -20n \log \left[1 - \frac{K_{OC}U_{BdX, min}}{U_{Pm}} \left(\frac{\Delta_{PV, max}}{10^{20} - 1}\right)\right] =$$

$$= -20n \log \left[1 - N'_\Lambda \left(\frac{\Delta_{PV, max}}{10^{20} - 1}\right)\right],$$

(12.18)

где K_m – коэффициент усиления при $U_P = 0$, U_{Pm} – значение регулирующего напряжения, при котором коэффициент усиления равен нулю; N'_Λ – контрольная глубина обратной связи, создаваемая одним регулируемым каскадом и позволяющая связать между собой различные параметры системы АРУ,

$$N'_\Lambda = \frac{K_{OC}U_{BdX, min}}{K_m} \log \alpha = \frac{K_{OC}U_{BdX, min}}{U_{Pm}} \left(1 - \frac{1}{10^{20} - 1}\right),$$

(12.19)

Глубина обратной связи при n регулируемых каскадах

$$N = n \frac{K_{OC}U_{BdX, min}}{U_{Pm}} \left(1 - \frac{U_P}{U_{Pm}}\right)^{-1} = \frac{n \cdot N'_\Lambda}{\left[1 + N'_\Lambda\right] \cdot 10^{-\frac{\Delta_{PV, max}}{20n} - N'_\Lambda}},$$

(12.20)

при этом

$$N_{\max} = n \cdot N'_\Lambda \cdot 10^{-\frac{\Delta_{PV, max} + (n - 1) \Delta_{BdX, max}}{20n}}.$$

(12.21)

Обозначив $20 \log \left(\frac{N_{\max}}{n \cdot N'_\Lambda}\right) = D_N$, получим

$$D_N = \frac{\Delta_{BX, max} + (n - 1) \Delta_{BdX, max}}{n},$$

(12.22)

Уравнение амплитудной характеристики усилителя с АРУ

$$\Delta_{BX} = \Delta_{BdX} - 20n \log \left[1 - N'_\Lambda \left(\frac{\Delta_{BdX}}{10^{20} - 1}\right)\right].$$

(12.23)

Приведенные соотношения справедливы при уровне выходного сигнала

$$U_{BdX} \leq \frac{U_{BdX, min} \left(1 + N'_\Lambda\right)}{N'_\Lambda}.$$

(12.24)
Для удобства расчетов на рис. 12.9 приведены амплитудные характеристики систем АРУ (сплошные линии) и характеристики нормированной глубины обратной связи от уровня входных сигналов с двумя \((n = 2) \) и тремя \((n = 3) \) регулируемыми каскадами.

При экспоненциальной регулировочной характеристике для усилителя с \(n \) регулируемыми каскадами справедливы следующие соотношения.

\[
K = K_m \exp(-n \cdot \alpha \cdot U_p),
\]

\[
D_{PY} = 8.68 \cdot n \cdot \alpha \cdot U_p = 8.68 \cdot n \cdot \alpha \cdot K_{OC} U_{ВЫХ,min} \left(\frac{D_{ВЫХ}}{10} - 1 \right) =
\]

\[
= 8.68 \cdot n \cdot N_1 \left(10^{-\frac{D_{ВЫХ}}{20}} - 1 \right). \tag{12.26}
\]

Контрольная глубина обратной связи, создаваемая одним каскадом,

\[
N_1 = \alpha \cdot K_{OC} U_{ВЫХ,min} = \frac{D_{PY,max}}{8.68 \cdot n \left[\exp(0.115 D_{ВЫХ,max}) - 1 \right]} \tag{12.27}
\]

Глубина обратной связи при \(n \) регулируемых каскадах

\[
N = n N_1 \exp(0.115 D_{ВЫХ}), \tag{12.28}
\]

при этом \(D_N = D_{ВЫХ} \).

Уравнение амплитудной характеристики

\[
D_{ВХ} = D_{ВЫХ} + 8.68 n N_1 \left(\exp(0.115 U_{ВЫХ}) - 1 \right). \tag{12.29}
\]

На рис. 12.10 представлены обобщенные амплитудные характеристики и зависимость глубины обратной связи от уровня входных сигналов.

Приведенные соотношения и графики позволяют рассчитать статические параметры блоков (число регулируемых каскадов, коэффициент передачи цепи обратной связи и т.д.) по параметрам системы АРУ.

![Диаграмма](image.png)

Рис. 12.10. Обобщенные амплитудные характеристики систем АРУ
12.3 Расчет динамических характеристик

Важнейшая динамическая характеристика системы АРУ – ее инерционность, которая оценивается постоянной времени системы τ_{АРУ}.

Если считать, что: регулировочная характеристика усилителя системы линейная \(K(U_p) = K_m - U_p \cdot \tan(\alpha) \); напряжение задержки \(U_3 \) подается после детектора; в цепи обратной связи используется усилитель постоянного тока с коэффициентом усиления \(K_{УПТ} \) и однозвенный RC-фильтр с постоянной времени \(\tau_{ф} \), то при нулевых начальных условиях \((t = 0; \; U_p(0) = 0) \) имеем

\[
U_p = K_{OC} \frac{K_m \cdot U_{BX0} - U_3}{1 + N_0} \frac{1 - \exp\left(\frac{-\tau}{\tau_{АРУ}}\right)}{1 + \exp\left(\frac{-\tau}{\tau_{АРУ}}\right)}, \tag{12.30}
\]

где

\[
\tau_{АРУ} = \frac{\tau_{ф}}{1 + N_0}, \quad N_0 = K_{OC} \cdot U_{BX0} \cdot \tan(\alpha),
\]

\[
K(t) = \frac{K_m + K_{OC} \cdot U_3 \cdot \tan(\alpha)}{1 + N_0} \left(1 - \exp\left(\frac{-t}{\tau_{АРУ}}\right)\right) + K_{УПТ} \exp\left(\frac{-t}{\tau_{АРУ}}\right), \tag{12.31}
\]

\[
U_{Вых}(t) = U_{Вых0} \exp\left(\frac{-t}{\tau_{АРУ}}\right) + \frac{(K_m + K_{УПТ} \cdot U_3 \cdot \tan(\alpha)) \cdot \left(1 - \exp\left(\frac{-t}{\tau_{АРУ}}\right)\right)}{1 + N_0} U_{BX0}. \tag{12.32}
\]

При АМ колебаниях \(U_{BX}(t) = U_{BX0}(1 + m_{BX} \cos \Omega t) \) и выполнении условия \(m << 1 \) систему АРУ можно рассматривать как линейную с амплитудно и фазо-частотными характеристиками соответственно

\[
A = \frac{m_{Вых}}{m_{BX}} = \sqrt{\frac{1 + (\Omega \tau_{ф})^2}{(1 + N_0)^2 + (\Omega \tau_{ф})^2}}; \tag{12.33}
\]

\[
\varphi = \arctg \left[\frac{N_0 \Omega \tau_{ф}}{1 + N_0 + (\Omega \tau_{ф})^2} \right]. \tag{12.34}
\]

Задачи

12.1. Увеличивается ли чувствительность РПУ при применении АРУ?
12.2. В чем недостатки простой АРУ в сравнении с задержанной АРУ?
12.3. Амплитуда сигнала на входе РПУ изменяется 10 мКВ – 1 мВ, а амплитуда сигнала на выходе линейной части приемника 0,3 – 0,6 В. Определить динамический диапазон входного и выходного сигналов, требуемый диапазон
регулировки усиления линейной части при минимальном и максимальном значениях сигнала.

(Ответ: \[D_{ВХ} = 40 \text{ дБ}; \ D_{ВЫХ} = 6 \text{ дБ}; \ D_РУ = 34 \text{ дБ}; \ K_{\text{max}} = 3 \cdot 10^4; \ K_{\text{min}} = 600 \]).

12.4. Амплитуда сигнала изменяется на входе РПУ 5 – 700 мкВ, а на входе детектора 0,35 – 0,5 В. Параметры цепи обратной связи \[K_{\ell} = 0,5; \ K_{\Phi} = 1; \ K_{УПТ} = 25 \]. Регулируются два каскада на транзисторах КП 306А (рис. 12.7 б). Определить, какая применяется регулировка усиления – обратная или прямая, и объяснить почему.

(Ответ: обратная).

12.5. Построить примерный график амплитудных характеристик РПУ для регулировочных характеристик, показанных на рис. 12.11. При этом считать, что коэффициенты передачи детектора и фильтра в цепи обратной связи равны 1, а задержка отсутствует.

![Рис. 12.11. Регулировочные характеристики РПУ](image)

12.6. Построить амплитудную характеристику приемника АРУ при аппроксимации результирующей характеристики регулируемых каскадов \[K = 10^3/(1+10U_p) \], если коэффициенты передачи детектора и фильтра равны 1, и задержка отсутствует.

(Ответ: \[U_{ВЫХ} = \sqrt{2,5 \cdot 10^{-3} + 100U_{ВХ} - 0,05} \].

12.7. Уровень входного напряжения высокочастотного блока РПУ изменяется 1 мкВ – 1 В. Определить крутизну линейной регулировочной характеристики высокочастотного блока, чтобы система АРУ без задержки обеспечивала изменение выходного напряжения не более 6 дБ. Коэффициент передачи детектора и фильтра АРУ равны 1.

(Ответ: \(10^{-6} \text{ В}^{-1} \)).

12.8. Вывести выражение для регулировочной характеристики регулируемого усилителя системы АРУ, постоянная времени которой постоянна при изменении сигнала от \(U_{ВХ:min} \) до \(U_{ВХ:max} \).

(Ответ: \[\frac{K}{K_{\text{max}}} = \left(1 + \frac{U_p}{K_{OC}U_{ВЫХ:min}}\right)^{-N} \].
12.9. Аппроксимировать экспонентой регулировочную характеристику усилителя на биполярном транзисторе (рис. 12.12) в диапазоне изменения тока эмиттера 4 – 10 мА.

(Ответ: \(\frac{K}{K_{\text{max}}} = \exp[-\alpha (I_3 - \beta)] \); \(\alpha = 44 \text{ мА}^{-1}; \beta = 3,2 \text{ мА} \)).

Рис. 12.12. Регулировочные характеристики усилителя

12.10. Используя характеристики биполярного транзистора (рис. 12.12), рассчитать систему АРУ со следующими параметрами: диапазон изменения входных сигналов 80 дБ, выходных – 3 дБ, при \(U_{\text{Вых, min}} = 0,5 \text{ В} \); постоянная времени не менее 0,2 с. Определить число регулируемых каскадов, коэффициент передачи цепи обратной связи, постоянную времениフィルタ, при решении аппроксимировать проходную характеристику прямой линией и использовать результаты, полученные в задаче 12.9.

(Ответ: аппроксимируя проходную характеристику транзистора характеристистикой \(I_K = 62,5(U_{БЭ} - 0,31) \) и полагая \(I_K = I_3 \), получаем: \(\alpha = 27,5; \quad n = 3; \quad K_{OC} = 0,52; \quad \tau_\phi \geq 6,3 \text{ с} \)).

12.11. Построить амплитудную характеристику приемника с системой прямой АРУ (рис. 12.13) при следующих исходных данных: диапазон изменения амплитуды входного сигнала 0...3 мВ; напряжение задержки 0,35 В; \(K_1 = 10^3; \quad K_D = 0,7; \quad K_\phi = 0,8; \) Регулировочная характеристика описывается выражением \(K_2 = \frac{10}{(1+5,1U_R)} \).

12.12. Рассчитать параметры блоков системы АРУ по следующим основным данным: диапазон амплитуд входных сигналов 10мкВ…10мВ, выходных – 0,5…1В; постоянная времени системы АРУ не менее 100 мс; задержка на уровне минимального входного сигнала. Регулируемые каскады построены на полевом транзисторе КП303Б (рис. 12.6), диапазон регулировки на один каскад 30 дБ. Определить число регулируемых каскадов, параметры цепи обратной связи ($K_{УПТ}$, $τ_{ф}$), напряжение задержки. Принять при расчетах $K_{Д} = 0,5$.

(Ответ: при аппроксимации регулировочной характеристики каскада прямой с $U_{Pm} = 2$ В, получаем: $n = 2$; $K_{УПТ} = 8$; $τ_{ф} \geq 8,7$ с; $U_{3} = 0,5$ В).

(Ответ: $n = 2$; $D_{вых} = 3,6$ дБ; $N_{max} = 19$; $τ_{ф} \geq 2$ с; $U_{3} = 0,5$ В; УПТ не нужен).

12.14. Регулировочная характеристика блока высокой частоты РПУ показана на рис. 12.15. Динамический диапазон входных сигналов 0,1…32 мВ. Минимальное выходное напряжение высокочастотного блока 1 В, а его изменение допускается не более, чем на 10 дБ. Рассчитать напряжение задержки в системе АРУ, принимая $K_{D} = 1$; $K_{Ф} = 0,3$. Проверить обеспечение необходимого $U_{р}$ при $U_{C} = 32$ мВ.

(Ответ: $U_{3} = 1$ В).

Рис. 12.13. Прямая АРУ
Рис. 12.14. Амплитудная характеристика
Рис. 12.15. Регулировочная характеристика
12.15. Построить примерный график установления выходного напряжения УПЧ, охваченного цепью АРУ. Форма огибающей входного напряжения и амплитудная характеристика РПУ показаны на рис. 12.16 а и б соответственно. (Ответ: показан на рис. 12.17).

Рис. 12.16. К задаче 12.15

Рис. 12.17. График установления выходного напряжения

12.16. Регулировочная характеристика усилителя системы АРУ приведена на рис. 12.18. Напряжение задержки 0,3 В; $K_D = 1$; усилитель в цепи обратной связи отсутствует. Построить по точкам амплитудную характеристику усилителя в диапазоне выходных сигналов 0 – 1 В.

Рис. 12.18. Регулировочная характеристика усилителя системы АРУ
ЗАКЛЮЧЕНИЕ

Предлагаемый сборник задач и упражнений по дисциплине «Устройства приема и обработки сигналов» дает общие сведения о радиоприемных устройствах, позволяет усвоить основы теории и практики в процессе их проектирования.

Однако с течением времени появится новая информация об идеях и технических достижениях, которые сформируют новый курс радиоприемных устройств, изучение которого базируется на знаниях основ техники радиоприема.

Успешное освоение сложившихся фундаментальных физических принципов радиоприема, общей методологии проектирования радиоприемной аппаратуры различного назначения и ее схемотехнической реализации предполагает широкую общенаучную и практическую подготовку студентов. Такая подготовка предусматривается учебными планами и рабочими программами дисциплин, когда лекционные курсы подкрепляются практическими занятиями. Этой цели и способствует данное учебное пособие.
БИБЛИОГРАФИЧЕСКИЙ СПИСОК

2. Егоров, Е.И. Использование радиочастотного спектра и радиопомехи / Е.И. Егоров, Н.И. Калашников, А.С. Михайлов. – М.: Радио и связь, 1986. – 304 с.